
Chapter 4

Ensembles of Rearrangement

Pathways

I dreamed a thousand new paths. . .

I woke and walked my old one.

Chinese proverb

4.1 Introduction

Stochastic processes are widely used to treat phenomena with random factors and

noise. Markov processes are an important class of stochastic processes for which fu-

ture transitions do not depend upon how the current state was reached. Markov pro-

cesses restricted to a discrete, finite, or countably infinite state space are called Markov

chains [123, 187, 188]. The parameter that is used to number all the states in the state

space is called the time parameter. Many interesting problems of chemical kinetics

concern the analysis of finite-state samples of otherwise infinite state space [9].

When analysing the kinetic databases obtained from discrete path sampling (DPS)

studies [8] it can be difficult to extract the phenomenological rate constants for processes

that occur over very long time scales [9]. DPS databases are composed of local minima

of the potential energy surface (PES) and the transition states that connect them.

While minima correspond to mechanically stable structures, the transition states specify

how these structures interconvert and the corresponding rates. Whenever the potential
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energy barrier for the event of interest is large in comparison with kBT the event

becomes rare, where T is the temperature and kB is Boltzmann’s constant.

The most important tools previously employed to extract kinetic information from a

DPS stationary point database are the master equation [189], kinetic Monte Carlo [190,

191] (KMC) and matrix multiplication (MM) methods [8]. The system of linear mas-

ter equations in its matrix formulation can be solved numerically to yield the time

evolution of the occupation probabilities starting from an arbitrary initial distribu-

tion. This approach works well only for small problems, as the diagonalisation of

the transition matrix, P, scales as the cube of the number of states [9]. In addi-

tion, numerical problems arise when the magnitude of the eigenvalues corresponding

to the slowest relaxation modes approaches the precision of the zero eigenvalue corre-

sponding to equilibrium [192]. The KMC approach is a stochastic technique that is

commonly used to simulate the dynamics of various physical and chemical systems,

examples being formation of crystal structures [193], nanoparticle growth [194] and

diffusion [195]. The MM approach provides a way to sum contributions to phenomeno-

logical two-state rate constants from pathways that contain progressively more steps.

It is based upon a steady-state approximation, and provides the corresponding solution

to the linear master equation [189, 196]. The MM approach has been used to analyse

DPS databases in a number of systems ranging from Lennard-Jones clusters [8, 10] to

biomolecules [133, 197].

Both the standard KMC and MM formulations provide rates at a computational

cost that generally grows exponentially as the temperature is decreased. In this chapter

we describe alternative methods that are deterministic and formally exact, where the

computational requirements are independent of the temperature and the time scale on

which the process of interest takes place.

4.1.1 Graph Theory Representation of a Finite-state Markov Chain

In general, to fully define a Markov chain it is necessary to specify all the possible

states of the system and the rules for transitions between them. Graph theoretical

representations of finite-state Markov chains are widely used [187, 198–200]. Here we

adopt a digraph [154, 201] representation of a Markov chain, where nodes represent
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the states and edges represent the transitions of non-zero probability. The edge ei,j

describes a transition from node j to node i and has a probability Pi,j associated with

it, which is commonly known as a routing or branching probability. A node can be

connected to any number of other nodes. Two nodes of a graph are adjacent if there is

an edge between them [202].

For digraphs all connections of a node are classified as incoming or outgoing. The

total number of incoming connections is the in-degree of a node, while the total number

of outgoing connections is the out-degree. In a symmetric digraph the in-degree and

out-degree are the same for every node [154]. AdjIn[i] is the set of indices of all

nodes that are connected to node i via incoming edges that finish at node i. Similarly,

AdjOut[i] is the set of the indices of all the nodes that are connected to node i via

outgoing edges from node i. The degree of a graph is the maximum degree of all of

its nodes. The expectation value for the degree of an undirected graph is the average

number of connections per node.

For any node i the transition probabilities Pj,i add up to unity,

∑

j

Pj,i = 1, (4.1)

where the sum is over all j ∈ AdjOut[i]. Unless specified otherwise all sums are taken

over the set of indices of adjacent nodes or, since the branching probability is zero for

non-adjacent nodes, over the set of all the nodes.

In a computer program dense graphs are usually stored in the form of adjacency

matrices [154]. For sparse graphs [201] a more compact but less efficient adjacency-

lists-based data structure exists [154]. To store a graph representation of a Markov

chain, in addition to connectivity information (available from the adjacency matrix),

the branching probabilities must be stored. Hence for dense graphs the most convenient

approach is to store a transition probability matrix [187] with transition probabilities

for non-existent edges set to zero. For sparse graphs, both the adjacency list and a list

of corresponding branching probabilities must be stored.

4.1.2 The Kinetic Monte Carlo Method

The KMC method can be used to generate a memoryless (Markovian) random walk

and hence a set of trajectories connecting initial and final states in a DPS database.
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Many trajectories are necessary to collect appropriate statistics. Examples of pathway

averages that are usually obtained with KMC are the mean path length and the mean

first passage time. Here the KMC trajectory length is the number of states (local

minima of the PES in the current context) that the walker encounters before reaching

the final state. The first passage time is defined as the time that elapses before the

walker reaches the final state. For a given KMC trajectory the first passage time is

calculated as the sum of the mean waiting times in each of the states encountered.

Within the canonical Metropolis Monte Carlo approach a step is always taken if

the proposed move lowers the energy, while steps that raise the energy are allowed

with a probability that decreases with the energy difference between the current and

proposed states [32]. An efficient way to propagate KMC trajectories was suggested by

Bortz, Kalos, and Lebowitz (BKL) [190]. According to the BKL algorithm, a step is

chosen in such a way that the ratios between transition probabilities of different events

are preserved, but rejections are eliminated. Figure 4.1 explains this approach for a

simple discrete-time Markov chain. The evolution of an ordinary KMC trajectory is

monitored by the ‘time’ parameter n, n ∈ W, which is incremented by one every time

a transition from any state is made. The random walker is in state 1 at time n = 0.

The KMC trajectory is terminated whenever an absorbing state is encountered. As

P1,1 approaches unity transitions out of state 1 become rare. To ensure that every

time a random number is generated (one of the most time consuming steps in a KMC

calculation) a move is made to a neighbouring state we average over the transitions

from state 1 to itself to obtain the Markov chain depicted in Figure 4.1 (b). Transitions

from state 1 to itself can be modelled by a Bernoulli process [33] with the probability

of success equal to P1,1. The average time for escape from state 1 is obtained as

τ1 = (1− P1,1)

∞∑

n=0

(n + 1)(P1,1)
n =

1

(1− P1,1)
, (4.2)

which can be used as a measure of the efficiency of trapping [203]. Transition proba-

bilities out of state 1 are renormalised:

Pα,1′ =
Pα,1

1− P1,1
,

Pβ,1′ =
Pβ,1

1− P1,1
.

(4.3)
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Figure 4.1: BKL algorithm for propagating a KMC trajectory applied to a three-state Markov

chain. (a) The transition state diagram is shown where states and transitions are represented

by circles and directed arrows, respectively. The Markov chain is parametrised by transition

probabilities Pα,1, Pβ,1 and P1,1. Absorbing states α and β are shaded. If P1,1 is close to unity

the KMC trajectory is likely to revisit state 1 many times before going to α or β. (b) State

1 is replaced with state 1′. The new Markov chain is parametrised by transition probabilities

Pα,1′ , Pβ,1′ and the average time for escape from state 1, τ1. Transitions from state 1′ to itself

are forbidden. Every time state 1′ is visited the simulation ‘clock’ is incremented by τ1.

Similar ideas underlie the accelerated Monte Carlo algorithm suggested by Novotny [26].

According to this ‘Monte Carlo with absorbing Markov chains’ (MCAMC) method, at

every step a Markov matrix, P, is formed, which describes the transitions in a sub-

space S that contains the current state α , and a set of adjacent states that the random

walker is likely to visit from α. A trajectory length, n, for escape from S is obtained

by bracketing a uniformly distributed random variable, r, as

∑

β

[Pn]β,α < r 6
∑

β

[
P

n−1
]
β,α

. (4.4)

Then an n-step leapfrog move is performed to one of the states γ /∈ S and the simulation

clock is incremented by n. State γ is chosen at random with probability

[
RP

n−1
]
γ,α

/
∑

γ

[
RP

n−1
]
γ,α

, (4.5)

where Rγ,α is the transition probability from state α ∈ S to state γ /∈ S. Both the

BKL and MCAMC methods can be many orders of magnitude faster than the standard

KMC method when kinetic traps are present.

In chemical kinetics transitions out of a state are described using a Poisson process,

which can be considered a continuous-time analogue of Bernoulli trials. The transition
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probabilities are determined from the rates of the underlying transitions as

Pj,i =
kj,i∑

α

kα,i

. (4.6)

There may be several escape routes from a given state. Transitions from any state to

directly connected states are treated as competing independent Poisson processes, which

together generate a new Poisson distribution [179]. n independent Poisson processes

with rates k1, k2, k3, . . . , kn combine to produce a Poisson process with rate k =
∑n

i=1 ki. The waiting time for a transition to occur to any connected state is then

exponentially distributed as k exp(−kt) [204].

Given the exponential distribution of waiting times the mean waiting time in state

i before escape, τi, is 1/
∑

j kj,i and the variance of the waiting time is simply τ2
i .

Here kj,i is the rate constant for transitions from i to j. When the average of the

distribution of times is the property of interest, and not the distribution of times itself,

it is sufficient to increment the simulation time by the mean waiting time rather than

by a value drawn from the appropriate distribution [9, 205]. This modification to the

original KMC formulation [206, 207] reduces the cost of the method and accelerates

the convergence of KMC averages without affecting the results.

4.1.3 Discrete Path Sampling

The result of a DPS simulation is a database of local minima and transition states from

the PES [8–10]. To extract thermodynamic and kinetic properties from this database

we require partition functions for the individual minima and rate constants, kα,β, for

the elementary transitions between adjacent minima β and α. We usually employ

harmonic densities of states and statistical rate theory to obtain these quantities, but

these details are not important here. To analyse the global kinetics we further assume

Markovian transitions between adjacent local minima, which produces a set of linear

(master) equations that governs the evolution of the occupation probabilities towards

equilibrium [189, 196]

dPα(t)

dt
=
∑

β

kα,βPβ(t)− Pα(t)
∑

β

kβ,α, (4.7)

where Pα(t) is the occupation probability of minimum α at time t.
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All the minima are classified into sets A, B and I. When local equilibrium is

assumed within the A and B sets we can write

Pa(t) =
P eq

a PA(t)

P eq
A

and Pb(t) =
P eq

b PB(t)

P eq
B

, (4.8)

where PA(t) =
∑

a∈A Pa(t) and PB(t) =
∑

b∈B Pb(t). If the steady-state approximation

is applied to all the intervening states i ∈ I = {i1, i2, i3, . . . , ini
}, so that

dPi(t)

dt
= 0, (4.9)

then Equation 4.7 can be written as [9]

dPA(t)

dt
= kA,BPB(t)− kB,APA(t),

dPB(t)

dt
= kB,APA(t)− kA,BPB(t).

(4.10)

The rate constants kA,B and kB,A for forward and backward transitions between states

A and B are the sums over all possible paths within the set of intervening minima of

the products of the branching probabilities corresponding to the elementary transitions

for each path:

kDPS
A,B =

′∑

a←b

ka,i1∑

α1

kα1,i1

ki1,i2∑

α2

kα2,i2

· · ·
kin−1,in∑

αn

kαn,in

kin,b P eq
b

P eq
B

=
′∑

a←b

Pa,i1Pi1,i2 · · ·Pin−1,in

kin,b P eq
b

P eq
B

,

(4.11)

and similarly for kB,A [8]. The sum is over all paths that begin from a state b ∈ B

and end at a state a ∈ A, and the prime indicates that paths are not allowed to revisit

states in B. In previous contributions [8, 10, 133, 197] this sum was evaluated using

a weighted adjacency matrix multiplication (MM) method, which will be reviewed in

Section 4.2.

4.1.4 KMC and DPS Averages

We now show that the evaluation of the DPS sum in Equation 4.11 and the calculation

of KMC averages are two closely related problems.

For KMC simulations we define sources and sinks that coincide with the set of initial

states B and final states A, respectively.∗ Every cycle of KMC simulation involves the

∗Terminology taken from graph theory. In probability theory, state i is called absorbing if Pi,i = 1,

which coincides with our definition of a sink.



4.1. Introduction 80

generation of a single KMC trajectory connecting a node b ∈ B and a node a ∈ A. A

source node b is chosen from set B with probability P eq
b /P eq

B .

We can formulate the calculation of the mean first passage time from B to A in

graph theoretical terms as follows. Let the digraph consisting of nodes for all local

minima and edges for each transition state be G. The digraph consisting of all nodes

except those belonging to region A is denoted by G. We assume that there are no

isolated nodes in G, so that all the nodes in A can be reached from every node in G.

Suppose we start a KMC simulation from a particular node β ∈ G. Let Pα(n) be the

expected occupation probability of node α after n KMC steps, with initial conditions

Pβ(0) = 1 and Pα6=β(0) = 0. We further define an escape probability for each α ∈ G as

the sum of branching probabilities to nodes in A, i.e.

EG
α =

∑

a∈A

Pa,α. (4.12)

KMC trajectories terminate when they arrive at an A minimum, and the expected

probability transfer to the A region at the nth KMC step is
∑

α∈G E
G
α Pα(n). If there

is at least one escape route from G to A with a non-zero branching probability, then

eventually all the occupation probabilities in G must tend to zero and

ΣG
β =

∞∑

n=0

∑

α∈G

EG
α Pα(n) = 1. (4.13)

We now rewrite Pα(n) as a sum over all n-step paths that start from β and end at

α without leaving G. Each path contributes to Pα(n) according to the appropriate

product of n branching probabilities, so that

ΣG
β =

∑

α∈G

EG
α

∞∑

n=0

Pα(n)

=
∑

α∈G

EG
α

∞∑

n=0

∑

Ξ(n)

Pα,in−1Pin−1,in−2 · · ·Pi2,i1Pi1,β

=
∑

α∈G

EG
α S

G
α,β = 1,

(4.14)

where Ξ(n) denotes the set of n-step paths that start from β and end at α without

leaving G, and the last line defines the pathway sum SG
α,β.

It is clear from the last line of Equation 4.14 that for fixed β the quantities EG
α S

G
α,β

define a probability distribution. However, the pathway sums SG
α,β are not probabilities,
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and may be greater than unity. In particular, SG
β,β > 1 because the path of zero length is

included, which contributes one to the sum. Furthermore, the normalisation condition

on the last line of Equation 4.14 places no restriction on SG
α,β terms for which EG

α

vanishes.

We can also define a probability distribution for individual pathways. Let Wξ be

the product of branching probabilities associated with a path ξ so that

SG
α,β =

∞∑

n=0

∑

ξ∈Ξ(n)

Wξ ≡
∑

ξ∈α←β

Wξ, (4.15)

where α← β is the set of all appropriate paths from β to α of any length that can visit

and revisit any node in G. If we focus upon paths starting from minima in region B

∑

b∈B

P eq
b

P eq
B

∑

α∈G

EG
α

∑

ξ∈α←b

Wξ =
∑

b∈B

P eq
b

P eq
B

∑

α∈GA

EG
α

∑

ξ∈α←b

Wξ = 1, (4.16)

where GA is the set of nodes in G that are adjacent to A minima in the complete graph

G, since EG
α vanishes for all other nodes. We can rewrite this sum as

∑

ξ∈GA←B

P eq
b

P eq
B

EG
αWξ =

∑

ξ∈A←B

P eq
b

P eq
B

Wξ =
∑

ξ∈A←B

Pξ = 1, (4.17)

which defines the non-zero pathway probabilities Pξ for all paths that start from any

node in set B and finish at any node in set A. The paths ξ ∈ A ← B can revisit any

minima in the G set, but include just one A minimum at the terminus. Note that Wξ

and Pξ can be used interchangeably if there is only one state in set B.

The average of some property, Qξ, defined for each KMC trajectory, ξ, can be

calculated from the Pξ as

〈Qξ〉 =
∑

ξ∈A←B

PξQξ. (4.18)

Of course, KMC simulations avoid this complete enumeration by generating trajectories

with probabilities proportional to Pξ, so that a simple running average can be used

to calculate 〈Qξ〉. In the following sections we will develop alternative approaches

based upon evaluating the complete sum, which become increasingly efficient at low

temperature. We emphasise that these methods are only applicable to problems with

a finite number of states, which are assumed to be known in advance.
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The evaluation of the DPS sum defined in Equation 4.11 can also be rewritten in

terms of pathway probabilities:

kDPS
A,B =

∞∑

n=0

′∑

Ξ(n)

Pα,i1Pi1,i2 · · ·Pin−1,in

kin,β P eq
β

P eq
B

,

=
∞∑

n=0

′∑

Ξ(n)

Pα,i1Pi1,i2 · · ·Pin−1,inPin,βτ−1
β

P eq
β

P eq
B

=
′∑

ξ∈A←B

Pξτ
−1
β ,

(4.19)

where the prime on the summation indicates that the paths are not allowed to revisit

the B region. We have also used the fact that kin,b = Pin,b/τb.

A digraph representation of the restricted set of pathways defined in Equation 4.19

can be created if we allow sets of sources and sinks to overlap. In that case all the nodes

A ∪ B are defined to be sinks and all the nodes in B are the sources, i.e. every node

in set B is both a source and a sink. The required sum then includes all the pathways

that finish at sinks of type A, but not those that finish at sinks of type B. The case

when sets of sources and sinks (partially) overlap is discussed in detail in Section 4.6.

4.1.5 Mean Escape Times

Since the mean first passage time between states B and A, or the escape time from

a subgraph, is of particular interest, we first illustrate a means to derive formulae for

these quantities in terms of pathway probabilities.

The average time taken to traverse a path ξ = α1, α2, α3, . . . , αl(ξ) is calculated as

tξ = τα1 + τα2 + τα3 , . . . , ταl(ξ)−1
, where τα is the mean waiting time for escape from

node α, as above, αk identifies the kth node along path ξ, and l(ξ) is the length of path

ξ. The mean escape time from a graph G if started from node β is then

T G
β =

∑

ξ∈A←β

Pξtξ. (4.20)

If we multiply every branching probability, Pα,β, that appears in Pξ by exp(ζτβ) then
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the mean escape time can be obtained as:

T G
β =


 d

dζ


 ∑

ξ∈A←β

Pαl(ξ) ,αl(ξ)−1
eζτl(ξ)−1Pαl(ξ)−1,αl(ξ)−2

eζτl(ξ)−2 . . . Pα2,α1e
ζτα1






ζ=0

=


 d

dζ


 ∑

ξ∈A←β

Pαl(ξ) ,αl(ξ)−1
Pαl(ξ)−1 ,αl(ξ)−2

. . . Pα2,α1e
ζtξ






ζ=0

=
∑

ξ∈A←β

Pξtξ.

(4.21)

This approach is useful if we have analytic results for the total probability ΣG
β , which

may then be manipulated into formulae for T G
β , and is standard practice in probability

theory literature [208, 209]. The quantity Pα,βeζτβ is similar to the ‘ζ probability’

described in Reference [208]. Analogous techniques are usually employed to obtain T G
β

and higher moments of the first-passage time distribution from analytic expressions

for the first-passage probability generating function (see, for example, References [210,

211]). We now define P̃α,β = Pα,βeζτβ and the related quantities

ẼG
α =

∑

a∈A

P̃a,α = EG
α eζτα ,

W̃ξ = P̃αl(ξ) ,αl(ξ)−1
P̃αl(ξ)−1,αl(ξ)−2

. . . P̃α2,α1 =Wξe
ζtξ ,

P̃ξ = W̃ξP
eq
b /P eq

B ,

S̃G
α,β =

∑

ξ∈α←β

W̃ξ,

and Σ̃G
β =

∑

α∈G

ẼG
α S̃

G
α,β.

(4.22)

Note that
[
ẼG

α

]
ζ=0

= EG
α etc., while the mean escape time can now be written as

T G
β =

[
dΣ̃G

β

dζ

]

ζ=0

. (4.23)

In the remaining sections we show how to calculate the pathway probabilities, Pξ,

exactly, along with pathway averages, such as the waiting time. Chain graphs are

treated in Section 4.2 and the results are generalised to arbitrary graphs in Section 4.3.
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4.2 Chain Graphs

A general account of the problem of the first passage time in chemical physics was given

by Weiss as early as 1965 [212]. In Reference [212] he summarised various techniques

for solving such problems to date, and gave a general formula for moments of the first

passage time in terms of the Green’s function of the Fokker-Plank operator. Explicit

expressions for the mean first passage times in terms of the basic transition probabilities

for the case of a one-dimensional random walk were obtained by Ledermann and Reuter

in 1954 [213], Karlin and MacGregor in 1957 [214], Weiss in 1965 [212], Gardiner in

1985 [215], Van den Broeck in 1988 [216], Le Doussal in 1989 [217], Murthy and Kehr

and Matan and Havlin in 1989-1990 [211, 218, 219], Raykin in 1992 [210], Bar-Haim and

Klafter in 1998 [203], Pury and Cáceres in 2003 [220], and Slutsky, Kardar and Mirny

in 2004 [221, 222]. The one-dimensional random walk is therefore a very well researched

topic, both in the field of probability and its physical and chemical applications. The

results presented in this section differ in the manner of presentation.

A random walk in a discrete state space S, where all the states can be arranged

on a linear chain in such a way that Pi,j = 0 for all |i − j| > 1, is called a one-

dimensional or simple random walk (SRW). The SRW model attracts a lot of attention

because of its rich behaviour and mathematical tractability. A well known example of

its complexity is the anomalous diffusion law discovered by Sinai [223]. He showed that

there is a dramatic slowing down of an ordinary power law diffusion (RMS displacement

is proportional to (log t)2 instead of t1/2) if a random walker at each site i experiences a

random bias field Bi = Pi,i+1 − Pi,i−1. Stanley and Havlin generalised the Sinai model

by introducing long-range correlations between the bias fields on each site and showed

that the SRW can span a range of diffusive properties [224].

Although one-dimensional transport is rarely found on the macroscopic scale at

a microscopic level there are several examples, such as kinesin motion along micro-

tubules [225, 226], or DNA translocation through a nanopore [227, 228], so the SRW

is interesting not only from a theoretical standpoint. There is a number of models

that build upon the SRW that have exciting applications, examples being the SRW

walk with branching and annihilation [229], and the SRW in the presence of random

trappings [230]. Techniques developed for the SRW were applied to study more com-
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1 2 3 N

Figure 4.2: Chain graph of length N , depicted as the subgraph of a larger graph. Visible sink

nodes are shaded. Double-headed arrows represent pairs of directed edges.

plex cases, such as, for example, multistage transport in liquids [231], random walks on

fractals [232, 233], even-visiting random walks [234], self-avoiding random walks [235],

random walks on percolation clusters [236, 237], and random walks on simple regular

lattices [238, 239] and superlattices [240].

A presentation that discusses SRW first-passage probabilities in detail sufficient for

our applications is that of Raykin [210]. He considered pathway ensembles explicitly

and obtained the generating functions for the occupation probabilities of any lattice

site for infinite, half-infinite and finite one-dimensional lattices with the random walker

starting from an arbitrary lattice site. As we discuss below, these results have a direct

application to the evaluation of the DPS rate constants augmented with recrossings.

We have derived equivalent expressions for the first-passage probabilities independently,

considering the finite rather than the infinite case, which we discuss in terms of chain

digraphs below.

We define a chain as a digraph CN = (V,E) with N nodes and 2(N−1) edges, where

V = {v1, v2, . . . , vN} and E = {e1,2, e2,1, e2,3, e3,2, . . . , eN−2,N−1, eN−1,N−2}. Adjacent

nodes in the numbering scheme are connected via two oppositely directed edges, and

these are the only connections. A transition probability Pα,β is associated with every

edge eα,β , as described in Section 4.1.1. An N -node chain is depicted in Figure 4.2 as

a subgraph of another graph. The total probability of escape from the chain via node

N if started from node 1 is of interest because it has previously been used to associate
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contributions to the total rate constant from unique paths in DPS studies [8, 9]. We

can restrict the sampling to paths without recrossings between intermediate minima if

we perform the corresponding recrossing sums explicitly [8].

We denote a pathway in CN by the ordered sequence of node indices. The length of

a pathway is the number of edges traversed. For example, the pathway 1, 2, 1, 2, 3, 2, 3

has length 6, starts at node 1 and finishes at node 3. The indices of the intermediate

nodes 2, 1, 2, 3, 2 are given in the order in which they are visited. The product of

branching probabilities associated with all edges in a path was defined above as Wξ.

For example, the product for the above pathway is P3,2P2,3P3,2P2,1P1,2P2,1, which we

can abbreviate as W3,2,3,2,1,2,1. For a chain graph CN , which is a subgraph of G, we

also define the set of indices of nodes in G that are adjacent to nodes in CN but not

members of CN as Adj[CN ]. These nodes will be considered as sinks if we are interested

in escape from CN .

Analytical results for C3 are easily derived:

SC3
1,1 =

∞∑

n=0

(
W1,2,1

∞∑

m=0

(W2,3,2)
m

)n

=
1−W2,3,2

1−W1,2,1 −W2,3,2
,

SC3
2,1 =

∞∑

n=0

(W2,3,2)
n P2,1S

C3
1,1 =

P2,1

1−W1,2,1 −W2,3,2
,

SC3
3,1 = P3,2

∞∑

n=0

(W2,3,2)
n P2,1S

C3
1,1 =

W3,2,1

1−W1,2,1 −W2,3,2
,

SC3
2,2 =

∞∑

n=0

(W1,2,1 +W2,3,2)
n =

1

1−W1,2,1 −W2,3,2
,

SC3
3,2 = P3,2S

C3
2,2 =

P3,2

1−W1,2,1 −W2,3,2
.

(4.24)

These sums converge if the cardinality of the set Adj[C3] is greater than zero. To prove

this result consider a factor, f , of the form

f = Pα,βPβ,α

∞∑

m=0

(Pβ,γPγ,β)m, (4.25)

and assume that the branching probabilities are all non-zero, and that there is at least

one additional escape route from α, β or γ. We know that Pβ,γPγ,β < Pγ,β < 1

because Pα,β + Pγ,β 6 1 and Pα,β 6= 0. Hence f = Pα,βPβ,α/(1 − Pβ,γPγ,β). However,

Pα,βPβ,α + Pβ,γPγ,β 6 Pα,β + Pγ,β 6 1, and equality is only possible if Pβ,α = Pβ,γ =
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Pα,β +Pγ,β = 1, which contradicts the assumption of an additional escape route. Hence

Pα,βPβ,α < 1 − Pβ,γPγ,β and f < 1. The pathway sums SC3
1,2, S

C3
1,3, S

C3
2,3 and SC3

3,3

can be obtained from Equation 4.24 by permuting the indices. The last two sums in

Equation 4.24 are particularly instructive: the n’th term in the sum for SC3
2,2 and the

n’th term in the sum for SC3
3,2 are the contributions from pathways of length 2n and

2n + 1, respectively.

The pathway sums SCN

α,β can be derived for a general chain graph CN in terms of

recursion relations, as shown in Appendix C. The validity of our results for CN was

verified numerically using the matrix multiplication method described in Reference [8].

For a chain of length N we construct an N ×N transition probability matrix P with

elements

P =




0 P1,2 0 . . .

P2,1 0 P2,3 . . .

0 P3,2 0
...

...
. . .




. (4.26)

The matrix form of the system of Chapman-Kolmogorov equations [187] for homoge-

neous discrete-time Markov chains [123, 187] allows us to obtain the n-step transition

probability matrix recursively as

P(n) = PP(n − 1) = P
n. (4.27)

SCN

α,β can then be computed as

SCN

α,β =
M∑

n=1

[Pn]α,β , (4.28)

where the number of matrix multiplications, M , is adjusted dynamically depending on

the convergence properties of the above sum. We note that sink nodes are excluded

when constructing P and
∑

j Pj,i can be less than unity.

For chains a sparse-optimised matrix multiplication method for SCN

α,β scales asO(NM),

and may suffer from convergence and numerical precision problems for larger values of

N and branching probabilities that are close to zero or unity [8]. The summation

method presented in this section can be implemented to scale as O(N) with constant

memory requirements (Algorithm B.1). It therefore constitutes a faster, more robust
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Figure 4.3: CPU time needed to calculate the total transition probabilities for a chain of

length N . The data is shown for a sparse-optimised matrix multiplication (SMM) method

(blue) and a sparse-optimised version of Algorithm B.1 (red). Terminal nodes of each chain

were connected to a sink, one of the terminal nodes was chosen to be the source. All the

branching probabilities were set to 0.5. Each SMM calculation was terminated when 1.0−ΣCN

0

was less than 10−5. The inset shows the number of matrix multiplications, M , as a function of

chain length. Note the log10 scale on the horizontal axes.

and more precise alternative to the matrix multiplication method when applied to chain

graph topologies (Figure 4.3).

Mean escape times for C3 are readily obtained from the results in Equation 4.24 by

applying the method outlined in Section 4.1.5:

T C3
1 =

τ1(1−W2,3,2) + τ2P2,1 + τ3W3,2,1

1−W1,2,1 −W2,3,2
,

T C3
2 =

τ1P1,2 + τ2 + τ3P3,2

1−W1,2,1 −W2,3,2
,

(4.29)

and T C3
3 can be obtained from T C3

1 by permuting the subscripts 1 and 3.

The mean escape time from the CN graph if started from node β can be calculated

recursively using the results of Appendix D and Section 4.1.5 or by resorting to a

first-step analysis [241].
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3

α β

Figure 4.4: Complete graphs K2 and K3, depicted as the subgraphs of a larger graph. Visible

sink nodes are shaded.

4.3 Complete Graphs

In a complete digraph each pair of nodes is connected by two oppositely directed

edges [155]. The complete graph with N graph nodes is denoted KN = (V,E), and

has N nodes and N(N −1) edges, remembering that we have two edges per connection

(Figure 4.4). Due to the complete connectivity we need only consider two cases: when

the starting and finishing nodes are the same and when they are distinct. We employ

complete graphs for the purposes of generality. An arbitrary graph GN is a subgraph

of KN with transition probabilities for non-existent edges set to zero. All the results

in this section are therefore equally applicable to arbitrary graphs.

The complete graph K2 will not be considered here as it is topologically identical to

the graph C2. The difference between the K3 and C3 graphs is the existence of edges

that connect nodes 1 and 3. Pathways confined to K3 can therefore contain cycles, and

for a given path length they are significantly more numerous (Figure 4.5). The SK3
α,β
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Figure 4.5: The growth of the number of pathways with the pathway length for K3 and C3.

The starting node is chosen arbitrarily for K3 while for C3 the we start at one of the terminal

nodes. Any node adjacent to K3 or C3 is a considered to be a sink and for simplicity we consider

only one escape route from every node. Note the log10 scale on the vertical axis.

can again be derived analytically for this graph:

SK3
1,1 =

∞∑

n=0

(
(W1,2,1 +W1,3,1 +W1,2,3,1 +W1,3,2,1)

∞∑

m=0

(W2,3,2)
m

)n

=
1−W2,3,2

1−W1,2,1 −W2,3,2 −W1,3,1 −W1,2,3,1 −W1,3,2,1
,

SK3
2,1 =

∞∑

n=0

(W2,3,2)
n (P2,1 +W2,3,1)S

K3
1,1

=
P2,1 +W2,3,1

1−W1,2,1 −W2,3,2 −W1,3,1 −W1,2,3,1 −W1,3,2,1
.

(4.30)

The results for any other possibility can be obtained by permuting the node indices

appropriately.

The pathway sums SKN

α,β for larger complete graphs can be obtained by recursion.

For SKN

N,N any path leaving from and returning to N can be broken down into a step

out of N to any i < N , all possible paths between i and j < N − 1 within KN−1, and

finally a step back to N from j. All such paths can be combined together in any order,
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so we have a multinomial distribution [242]:

SKN

N,N =

∞∑

n=0




N−1∑

i=1




N−1∑

j=1

(
PN,jS

KN−1

j,i Pi,N

)





n

=


1−

N−1∑

i=1

N−1∑

j=1

PN,jS
KN−1

j,i Pi,N



−1

.

(4.31)

To evaluate SKN

1,N we break down the sum into all paths that depart from and return

to N , followed by all paths that leave node N and reach node 1 without returning to

N . The first contribution corresponds to a factor of SKN

N,N , and the second produces a

factor Pi,NS
KN−1

1,i for every i < N :

SKN

1,N = SKN

N,N

N−1∑

i=1

S
KN−1

1,i Pi,N , (4.32)

where SK1
1,1 is defined to be unity. Any other SKN

α,β can be obtained by a permutation of

node labels.

Algorithm B.2 provides an example implementation of the above formulae opti-

mised for incomplete graphs. The running time of Algorithm B.2 depends strongly on

the graph density. (A digraph in which the number of edges is close to the maximum

value of N(N − 1) is termed a dense digraph [202].) For KN the algorithm runs in

O(N2N ) time, while for an arbitrary graph it scales as O(d2N ), where d is the average

degree of the nodes. For chain graphs the algorithm runs in O(N) time and therefore

constitutes a recursive-function-based alternative to Algorithm B.1 with linear mem-

ory requirements. For complete graphs an alternative implementation with O((N !)2)

scaling is also possible.

Although the scaling of the above algorithm with N may appear disastrous, it does

in fact run faster than standard KMC and MM approaches for graphs where the escape

probabilities are several orders of magnitude smaller than the transition probabilities

(Algorithm B.2). Otherwise, for anything but moderately branched chain graphs, Al-

gorithm B.2 is significantly more expensive. However, the graph-transformation-based

method presented in Section 4.4 yields both the pathway sums and the mean escape

times for a complete graph KN in O(N3) time, and is the fastest approach that we

have found.
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Figure 4.6: Mean escape time from K3 as a function of the escape probability E . The

transition probabilities for the K3 graph are parametrised by E for simplicity: Pi,j = (1−E)/2

for all i, j ∈ {1, 2, 3} and E1 = E2 = E3 = E . Kinetic Monte Carlo data (triangles) was obtained

by averaging over 100 trajectories for each of 33 parameterisations. The solid line is the exact

solution obtained using Equation 4.33. The units of T K3 are arbitrary. Note the log10 scale on

the vertical axis.

Mean escape times for K3 are readily obtained from the results in Equation 4.30

by applying the method outlined in Section 4.1.5:

T K3
1 =

τ1(1−W2,3,2) + τ2(P2,1 +W2,3,1) + τ3(P3,1 +W3,2,1)

1−W1,2,1 −W2,3,2 −W3,1,3 −W1,2,3,1 −W1,3,2,1
. (4.33)

We have verified this result analytically using first-step analysis and numerically for

various values of the parameters τi and Pα,β . and obtained quantitative agreement (see

Figure 4.6). Figure 4.7 demonstrates how the advantage of exact summation over KMC

and MM becomes more pronounced as the escape probabilities become smaller.

4.4 Graph Transformation Method

The problem of calculation of the properties of a random walk on irregular networks was

addressed previously by Goldhirsch and Gefen [208, 209]. They described a generating-

function-based method where an ensemble of pathways is partitioned into ‘basic walks’.

A walk was defined as a set of paths that satisfies a certain restriction. As the probabil-
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Figure 4.7: The computational cost of the kinetic Monte Carlo and matrix multiplication

methods as a function of escape probability for K3 (see caption to Figure 4.6 for the definition

of E). M is the number of matrix multiplications required to converge the value of the total

probability of getting from node 1 to nodes 1, 2 and 3: the calculation was terminated when

the change in the total probability between iterations was less than 10−3. The number of

matrix multiplications M and the average trajectory length 〈l〉 can be used as a measure

of the computational cost of the matrix multiplication and kinetic Monte Carlo approaches,

respectively. The computational requirements of the exact summation method are independent

of E . Note the log10 scale on the vertical axis.

ity generating functions corresponding to these basic walks multiply, the properties of

a network as a whole can be inferred given knowledge of the generating functions corre-

sponding to these basic walks. The method was applied to a chain, a loopless regularly

branched chain and a chain containing a single loop. To the best of our knowledge

only one [243] out of the 30 papers [209–211, 219–222, 240, 243–264] that cite the work

of Goldhirsch and Gefen [208] is an application, perhaps due to the complexity of the

method.

Here we present a graph transformation (GT) approach for calculating the pathway

sums and the mean escape times for KN . In general, it is applicable to arbitrary

digraphs, but the best performance is achieved when the graph in question is dense.

The algorithm discussed in this section will be referred to as DGT (D for dense). A
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sparse-optimised version of the GT method (SGT) will be discussed in Section 4.5.

The GT approach is similar in spirit to the ideas that lie behind the mean value

analysis and aggregation/disaggregation techniques commonly used in the performance

and reliability evaluation of queueing networks [187, 265–267]. It is also loosely related

to dynamic graph algorithms [268–271], which are used when a property is calculated

on a graph subject to dynamic changes, such as deletions and insertions of nodes and

edges. The main idea is to progressively remove nodes from a graph whilst leaving

the average properties of interest unchanged. For example, suppose we wish to remove

node x from graph G to obtain a new graph G′. Here we assume that x is neither

source nor sink. Before node x can be removed the property of interest is averaged

over all the pathways that include the edges between nodes x and i ∈ Adj[x]. The

averaging is performed separately for every node i. Next, we will use the waiting time

as an example of such a property and show that the mean first passage time in the

original and transformed graphs is the same.

The theory is an extension of the results used to perform jumps to second neighbours

in previous KMC simulations [8, 272]. Consider KMC trajectories that arrive at node

i, which is adjacent to x. We wish to step directly from i to any node in the set of

nodes Γ that are adjacent to i or x, excluding these two nodes themselves. To ensure

that the mean first-passage times from sources to sinks calculated in G and G′ are the

same we must define new branching probabilities, P ′γ,i from i to all γ ∈ Γ, along with a

new waiting time for escape from i, τ ′i . Here, τ ′i corresponds to the mean waiting time

for escape from i to any γ ∈ Γ, while the modified branching probabilities subsume all

the possible recrossings involving node x that could occur in G before a transition to a

node in Γ. Hence the new branching probabilities are:

P ′γ,i = (Pγ,xPx,i + Pγ,i)

∞∑

m=0

(Pi,xPx,i)
m = (Pγ,xPx,i + Pγ,i)/(1 − Pi,xPx,i). (4.34)

This formula can also be applied if either Pγ,i or Pγ,x vanishes.

It is easy to show that the new branching probabilities are normalised:

∑

γ∈Γ

Pγ,xPx,i + Pγ,i

1− Pi,xPx,i
=

(1− Pi,x)Px,i + (1− Px,i)

1− Pi,xPx,i
= 1. (4.35)
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To calculate τ ′i we use the method of Section 4.1.4:

τ ′i =


 d

dζ

∑

γ∈Γ

Pγ,xPx,ie
ζ(τx+τi) + Pγ,ie

ζτi

1− Pi,xPx,ieζ(τx+τi)




ζ=0

=
τi + Px,iτx

1− Pi,xPx,i
. (4.36)

The modified branching probabilities and waiting times could be used in a KMC sim-

ulation based upon graph G′. Here we continue to use the notation of Section 4.1.4,

where sinks correspond to nodes a ∈ A and sources to nodes in b ∈ B, and G contains

all the nodes in G expect for the A set, as before. Since the modified branching prob-

abilities, P ′γ,i, in G′ subsume the sums over all path paths from i to γ that involve x

we would expect the sink probability, ΣG
a,b, of a trajectory starting at b ending at sink

a, to be conserved. However, since each trajectory exiting from γ ∈ Γ acquires a time

increment equal to the average value, τ ′i , the mean first-passage times to individual

sinks, T G
a,b, are not conserved in G′ (unless there is a single sink). Nevertheless, the

overall mean first-passage time to A is conserved, i.e.
∑

a∈A T
G′

a,b = T G′

b = T G
b . To

prove these results more formally within the framework of complete sums consider the

effect of removing node x on trajectories reaching node i ∈ Adj[x] from a source node

b. The sink probability for a particular sink a is

ΣG
a,b =

∑

ξ∈a←b

Wξ

=
∑

ξ1∈i←b

Wξ1

∑

γ∈Γ

(Pγ,i + Px,iPγ,x)

∞∑

m=0

(Pi,xPx,i)
m

∑

ξ2∈a←γ

Wξ2

=
∑

ξ1∈i←b

Wξ1

∑

γ∈Γ

P ′γ,i

∑

ξ2∈a←γ

Wξ2,

(4.37)

and similarly for any other node adjacent to x. Hence the transformation preserves the

individual sink probabilities for any source.

Now consider the effect of removing node x on the mean first-passage time from
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source b to sink a, T G′

a,b , using the approach of Section 4.1.4.

T G′

a,b =


 d

dζ

∑

ξ1∈i←b

W̃ξ1

∑

γ∈Γ

P̃ ′γ,i

∑

ξ2∈a←γ

W̃ξ2




ζ=0

=
∑

ξ1∈i←b

[
dW̃ξ1

dζ

]

ζ=0

∑

γ∈Γ

P ′γ,i

∑

ξ2∈a←γ

Wξ2

+
∑

ξ1∈i←b

Wξ1

∑

γ∈Γ

[
dP̃ ′γ,i

dζ

]

ζ=0

∑

ξ2∈a←γ

Wξ2

+
∑

ξ1∈i←b

Wξ1

∑

γ∈Γ

P ′γ,i

∑

ξ2∈a←γ

[
dW̃ξ2

dζ

]

ζ=0

,

(4.38)

where the tildes indicate that every branching probability Pα,β is replaced by Pα,βeξτβ ,

as above. The first and last terms are unchanged from graph G in this construction,

but the middle term,

∑

ξ1∈i←b

Wξ1

∑

γ∈Γ

[
dP̃ ′γ,i

dζ

]

ζ=0

∑

ξ2∈a←γ

Wξ2

=
∑

ξ1∈i←b

Wξ1

∑

γ∈Γ

Pγ,xPx,i(τi + τx) + Pγ,i(τi + Pi,xPx,iτx)

(1− Pi,xPx,i)2

∑

ξ2∈a←γ

Wξ2 ,

(4.39)

is different (unless there is only one sink). However, if we sum over sinks then

∑

a∈A

∑

ξ2∈a←γ

Wξ2 = 1 (4.40)

for all γ, and we can now simplify the sum over γ as

∑

γ∈Γ

Pγ,xPx,i(τi + τx) + Pγ,i(τi + Pi,xPx,iτx)

(1− Pi,xPx,i)2
= τ ′i =

∑

γ∈Γ

P ′γ,iτ
′
i . (4.41)

The same argument can be applied whenever a trajectory reaches a node adjacent to

x, so that T G
b = T G′

b , as required.

The above procedure extends the BKL approach [190] to exclude not only the

transitions from the current state into itself but also transitions involving an adjacent

node x. Alternatively, this method could be viewed as a coarse-graining of the Markov

chain. Such coarse-graining is acceptable if the property of interest is the average of

the distribution of times rather than the distribution of times itself. In our simulations

the average is the only property of interest. In cases when the distribution itself is
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sought, the approach described here may still be useful and could be the first step in

the analysis of the distribution of escape times, as it yields the exact average of the

distribution.

The transformation is illustrated in Figure 4.8 for the case of a single source.

Figure 4.8 (a) displays the original graph and its parametrisation. During the first iter-

ation of the algorithm node 2 is removed to yield the graph depicted in Figure 4.8 (b).

This change reduces the dimensionality of the original graph, as the new graph con-

tains one node and three edges fewer. The result of the second, and final, iteration

of the algorithm is a graph that contains source and sink nodes only, with the correct

transition probabilities and mean waiting time [Figure 4.8 (c)].

We now describe algorithms to implement the above approach and calculate mean

escape times from complete graphs with multiple sources and sinks. Listings for some

of the algorithms discussed here are given in Appendix B. We follow the notation of

Section 4.1.4 and consider a digraph GN consisting of NB source nodes, NA sink nodes,

and NI intervening nodes. GN therefore contains the subgraph GNI+NB
.

The result of the transformation of a graph with a single source b and NA sinks

using Algorithm B.3 is the mean escape time T
GNI+1

b and NA pathway probabilities

Pξ, ξ ∈ A ← b. Solving a problem with NB sources is equivalent to solving NB single

source problems. For example, if there are two sources b1 and b2 we first solve a problem

where only node b1 is set to be the source to obtain T
GNI+NB

b1
and the pathway sums

from b1 to every sink node a ∈ A. The same procedure is then followed for b2.

The form of the transition probability matrix P is illustrated below at three stages:

first for the original graph, then at the stage when all the intervening nodes have been

removed (line 16 in Algorithm B.3), and finally at the end of the procedure:




0 A← I A← B

0 I ⇆ I I ← B

0 B ← I B ⇆ B


→




0 0 A← B

0 0 0

0 0 B ⇆ B


→




0 0 A← B

0 0 0

0 0 0


 , (4.42)

Each matrix is split into blocks that specify the transitions between the nodes of a

particular type, as labelled. Upon termination, every element in the top right block of

matrix P is non-zero.

Algorithm B.3 uses the adjacency matrix representation of graph GN , for which the
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1

1′

1′′

2

3

3′

α

α

α

β

β

β

γ

γ

γ

(a)

P2,1, P3,1, Pα,1, P1,2, P3,2, Pβ,2,

P1,3, P2,3, Pγ,3, τ1, τ2, τ3.

(b)

Pα,1′ =
Pα,1

1− P1,2,1
, Pβ,1′ =

Pβ,2P2,1

1− P1,2,1
,

P3′,1′ =
P3,1 + P3,2,1

1− P1,2,1
, P1′,3′ =

P1,3 + P1,2,3

1− P2,3,2
,

Pβ,3′ =
Pβ,2P2,3

1− P2,3,2
, Pγ,3′ =

Pγ,3

1− P2,3,2
,

τ1′ =
τ1 + τ2P2,1

1− P1,2,1
, τ3′ =

τ3 + τ2P2,3

1− P2,3,2
.

(c)

Pα,1′′ = Pα,1S
K3
1,1 , Pβ,1′′ = Pβ,2S

K3
2,1 ,

Pγ,1′′ = Pγ,3S
K3
3,1 , τ1′′ = τK3

1 .

Figure 4.8: The graph transformation

algorithm of Section 4.4 at work. (a)

A digraph with 6 nodes and 9 edges.

The source node is node 1 (white), the

sinks are nodes α, β and γ (shaded),

and the intermediate nodes are 2 and

3 (black). The waiting times and tran-

sition probabilities that parametrise the

graph are given below the diagram. (b)

Node 2 and all its incoming and out-

going edges are deleted from the graph

depicted in (a). Two edges β ← 1 and

β ← 3 are added. The parameters for

this new graph are denoted by primes

and expressed in terms of the param-

eters for the original graph. (c) Node

3 is now disconnected as well. The re-

sulting graph is composed of source and

sink nodes only. The total probability

and waiting times coincide with these of

K3, as expected. The new parameters

are denoted by a double prime.
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average of the distribution of mean first passage times is to be obtained. For efficiency,

when constructing the transition probability matrix P we order the nodes with the sink

nodes first and the source nodes last. Algorithm B.3 is composed of two parts. The

first part (lines 1-16) iteratively removes all the intermediate nodes from graph GN to

yield a graph that is composed of sink nodes and source nodes only. The second part

(lines 17-34) disconnects the source nodes from each other to produce a graph with

NA +NB nodes and (NA +NB)2 directed edges connecting each source with every sink.

Lines 13-15 are not required for obtaining the correct answer, but the final transition

probability matrix looks neater.

The computational complexity of lines 1-16 of Algorithm B.3 is O(N3
I + N2

I NB +

N2
I NA + NIN

2
B + NINBNA). The second part of Algorithm B.3 (lines 17-34) scales

as O(N3
B + N2

BNA). The total complexity for the case of a single source and for the

case when there are no intermediate nodes is O(N3
I + N2

I NA) and O(N3
B + N2

BNA),

respectively. The storage requirements of Algorithm B.3 scale as O
(
(NI + NB)2

)
.

We have implemented the algorithm in Fortran 95 and timed it for complete graphs

of different sizes. The results presented in Figure 4.9 confirm the overall cubic scaling.

The program is GPL-licensed [273] and available online [274]. These and other bench-

marks presented in this chapter were obtained for a single Intel R© Pentium R© 4 3.00GHz

512 Kb cache processor running under the Debian GNU/Linux operating system [275].

The code was compiled and optimised using the IntelR© Fortran compiler for Linux.

4.5 Applications to Sparse Random Graphs

Algorithm B.3 could easily be adapted to use adjacency-lists-based data structures [154],

resulting in a faster execution and lower storage requirements for sparse graphs. We

have implemented [274] a sparse-optimised version of Algorithm B.3 because the graph

representations of the Markov chains of interest in the present work are sparse [201].

The algorithm for detaching a single intermediate node from an arbitrary graph

stored in a sparse-optimised format is given in Algorithm B.4. Having chosen the

node to be removed, γ, all the neighbours β ∈ Adj[γ] are analysed in turn, as follows.

Lines 3-9 of Algorithm B.4 find node γ in the adjacency list of node β. If β is not a sink,

lines 11-34 are executed to modify the adjacency list of node β: lines 13-14 delete node
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Figure 4.9: CPU time needed to transform a dense graph G2N using Algorithm B.3 as a

function of N . The graph G2N is composed of a KN subgraph and N sink nodes. The data is

shown for six different cases, when there was a single source, and when the sources comprised

20, 40, 60, 90, and 100 percent of the number of nodes in KN , as labelled. The data for the

cases 1 and N was fitted as 5.1× 10−9N3 and 1.5× 10−8N3, respectively (curves not shown).

For case 1 only DetachNode operations were performed while for N — only Disconnect.

γ from the adjacency list of β, while lines 15-30 make all the neighbours α ∈ Adj[γ]⊖β

of node γ the neighbours of β. The symbol ⊖ denotes the union minus the intersection

of two sets, otherwise known as the symmetric difference. If the edge β → α already

existed only the branching probability is changed (line 21). Otherwise, a new edge

is created and the adjacency and branching probability lists are modified accordingly

(line 26 and line 27, respectively). Finally, the branching probabilities of node β are

renormalised (lines 31-33) and the waiting time for node β is increased (line 34).

Algorithm B.4 is invoked iteratively for every node that is neither a source nor a

sink to yield a graph that is composed of source nodes and sink nodes only. Then
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the procedure described in Section 4.4 for disconnection of source nodes (lines 17-34 of

Algorithm B.3) is applied to obtain the mean escape times for every source node. The

sparse-optimised version of the second part of Algorithm B.3 is straightforward and is

therefore omitted here for brevity.

The running time of Algorithm B.4 is O(dc
∑

i∈Adj[c] di), where dk is the degree

of node k. For the case when all the nodes in a graph have approximately the same

degree, d, the complexity is O(d3). Therefore, if there are N intermediate nodes to be

detached and d is of the same order of magnitude as N , the cost of detaching N nodes

is O(N4). The asymptotic bound is worse than that of Algorithm B.3 because of the

searches through adjacency lists (lines 3-9 and lines 19-24). If d is sufficiently small the

algorithm based on adjacency lists is faster.

After each invocation of Algorithm B.4 the number of nodes is always decreased by

one. The number of edges, however, can increase or decrease depending on the in- and

out-degree of the node to be removed and the connectivity of its neighbours. If node

γ is not directly connected to any of the sinks, and the neighbours of node γ are not

connected to each other directly, the total number of edges is increased by dγ(3− dγ).

Therefore, the number of edges decreases (by 2) only when dγ ∈ {1, 2}, and the number

of edges does not change if the degree is 3. For dγ > 3 the number of edges increases

by an amount that grows quadratically with dγ . The actual increase depends on how

many connections already existed between the neighbours of γ.

The order in which the intermediate nodes are detached does not change the final

result and is unimportant if the graph is complete. For sparse graphs, however, the order

can affect the running time significantly. If the degree distribution for successive graphs

is sharp with the same average, d, then the order in which the nodes are removed does

not affect the complexity, which is O(d3N). If the distributions are broad it is helpful to

remove the nodes with smaller degrees first. A Fibonacci heap min-priority queue [276]

was successfully used to achieve this result. The overhead for maintaining a heap is dγ

increase-key operations (of O(log(N)) each) per execution of Algorithm B.4. Fortran

and Python implementations of Algorithm B.4 algorithm are available online [274].

Random graphs provide an ideal testbed for the GT algorithm by providing control

over the graph density. A random graph, RN , is obtained by starting with a set of N
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nodes and adding edges between them at random [33]. In this work we used a random

graph model where each edge is chosen independently with probability 〈d〉 /(N − 1),

where 〈d〉 is the target value for the average degree.

The complexity for removal of N nodes can then be expressed as

O


log(N)

∑

i∈{1,2,3,...,N}


d2

c(i)

∑

j∈Adj[c(i)]

dj,c(i)




 , (4.43)

where dc(i) is the degree of the node, c(i), removed at iteration i, Adj[c(i)] is its ad-

jacency list, and dj,c(i) is the degree of the jth neighbour of that node at iteration i.

The computational cost given in Equation 4.43 is difficult to express in terms of the

parameters of the original graph, as the cost of every cycle depends on the distribution

of degrees, the evolution of which, in turn, is dependent on the connectivity of the

original graph in a non-trivial manner (see Figure 4.10). The storage requirements of

a sparse-optimised version of GT algorithm scale linearly with the number of edges.

To investigate the dependence of the cost of the GT method on the number of

nodes, N , we have tested it on a series of random graphs RN for different values of N

and fixed average degree, 〈d〉. The results for three different values of 〈d〉 are shown in

Figure 4.11. The motivation for choosing 〈d〉 from the interval [3, 5] was the fact that

most of our stationary point databases have average connectivities for the local minima

that fall into this range.

It can be seen from Figure 4.11 that for sparse random graphs RN the cost scales

as O(N4) with a small 〈d〉-dependent prefactor. The dependence of the computational

complexity on 〈d〉 is illustrated in Figure 4.12.

From Figure 4.10 it is apparent that at some point during the execution of the

GT algorithm the graph reaches its maximum possible density. Once the graph is

close to complete it is no longer efficient to employ a sparse-optimised algorithm. The

most efficient approach we have found for sparse graphs is to use the sparse-optimised

GT algorithm until the graph is dense enough, and then switch to Algorithm B.3.

We will refer to this approach as SDGT. The change of data structures constitutes

a negligible fraction of the total execution time. Figure 4.13 depicts the dependence

of the CPU time as a function of the switching parameter Rs. Whenever the ratio

dc(i)/n(i), where the dc(i) is the degree of intermediate node c detached at iteration i,
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Figure 4.10: Evolution of the distribution of degrees for random graphs of different expected

degree, 〈d〉 = 5, 10, 15, as labelled. This is a colour-coded projection of the probability mass

function [277, 278], P (d), of the distribution of degrees as a function of the number of the

detached intermediate nodes, n. The straight line shows P (d, n) for complete graph K1000. All

four graphs contain a single source, 999 intermediate nodes and a single sink. The transfor-

mation was done using sparse-optimised version of Algorithm B.3 with Fibonacci-heap-based

min-priority queue. It can be seen that as the intermediate nodes are detached the density of

the graph that is being transformed grows. The expected degree of the initial graph determines

how soon the maximum density will be reached.

and n(i) is the number of the nodes on a heap at iteration i, is greater than Rs, the

partially transformed graph is converted from the adjacency list format into adjacency

matrix format and the transformation is continued using Algorithm B.3. It can be seen

from Figure 4.10 that for the case of a random graphs with a single sink, a single source

and 999 intermediate nodes the optimal values of Rs lie in the interval [0.07, 0.1].
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Figure 4.11: CPU time needed to transform a sparse random graph R2N using the GT

approach described in Section 4.4 as a function of the number of intermediate nodes, N . R2N is

composed of a single source node, N sink nodes and N−1 intermediate nodes. For each value of

N the data for three different values of the expected degree, 〈d〉 = 3, 4, 5, is shown, as labelled.

Solid lines are analytic fits of the form cN4, where c = 2.3× 10−11, 7.4× 10−11, 1.5× 10−10 for

〈d〉 = 3, 4, 5, respectively. CPU time is in seconds.

4.6 Overlapping Sets of Sources and Sinks

We now return to the digraph representation of a Markov chain that corresponds to the

DPS pathway ensemble discussed in Section 4.1.4. A problem with (partially) overlap-

ping sets of sources and sinks can easily be converted into an equivalent problem where

there is no overlap, and then the GT method discussed in Section 4.4 and Section 4.5

can be applied as normal.

As discussed above, solving a problem with n sources reduces to solving n single-

source problems. We can therefore explain how to deal with a problem of overlapping

sets of sinks and sources for a simple example where there is a single source-sink i and,
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Figure 4.12: CPU time needed to transform a sparse random graph R2N using the GT

approach as a function of the expected degree, 〈d〉. The data is shown for three graphs with

N = 500, 750 and 1000, as labelled. R2N is composed of a single source node, N sink nodes

and N − 1 intermediate nodes.

optionally, a number of sink nodes.

First, a new node i′ is added to the set of sinks and its adjacency lists are initialised

to AdjOut[i′] = ∅ and AdjIn[i′] = AdjIn[i]. Then, for every node j ∈ AdjOut[i] we

update its waiting time as τj = τj + τi and add node j to the set of sources with

probabilistic weight initialised to Pj,iWi, where Wi is the original probabilistic weight

of source i (the probability of choosing source i from the set of sources). Afterwards,

the node i is deleted.
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Figure 4.13: CPU time as a function of switching ratio Rs shown for random graphs of

different expected degree, 〈d〉 = 5, 10, 15, as labelled. All three graphs contain a single source,

999 intermediate nodes and a single sink. The transformation was performed using the sparse-

optimised version of Algorithm B.3 until the the ratio dc(i)/n(i) became greater than Rs. Then a

partially transformed graph was converted into adjacency matrix format and the transformation

was continued with Algorithm B.3. The optimal value of Rs lies in the interval [0.07, 0.1]. Note

the log10 scale on both axes.

4.7 Applications to Lennard-Jones Clusters

4.7.1 Oh ↔ Ih Isomerisation of LJ38

We have applied the GT method to study the temperature dependence of the rate

of Oh ↔ Ih interconversion of 38-atom Lennard-Jones cluster. The PES sample was

taken from a previous study [8] and contained 1740 minima and 2072 transition states.

Only geometrically distinct structures were considered when generating this sample

because this way the dimensionality of the problem is reduced approximately by a

factor of 2N !/h, where h is the order of the point group. Initial and final states in

this sample roughly correspond to icosahedral-like and octahedral-like structures on

the PES of this cluster. The assignment was made in Reference [8] by solving master

equation numerically to find the eigenvector that corresponds to the smallest non-

zero eigenvalue. As simple two-state dynamics are associated with exponential rise
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and decay of occupation probabilities there must exist a time scale on which all the

exponential contributions to the solution of the master equation decay to zero except

for the slowest [9]. The sign of the components of the eigenvector corresponding to the

slowest mode was used to classify the minima as Ih or Oh in character [8].

The above sample was pruned to ensure that every minimum is reachable from any

other minimum to create a digraph representation that contained 759 nodes including

43 source nodes and 5 sink nodes, and 2639 edges. The minimal, average and maxi-

mal degree for this graph were 2, 3.8 and 84, respectively, and the graph density was

4.6 × 10−3. We have used the SDGT algorithm with the switching ratio set to 0.08 to

transform this graph for several values of temperature. In each of these calculations

622 out of 711 intermediate nodes were detached using SGT, and the remaining 89

intermediate nodes were detached using the GT algorithm optimised for dense graphs

(DGT).

An Arrhenius plot depicting the dependence of the rate constant on temperature

is shown in Figure 4.14 (a). The running time of SDGT algorithm was 1.8× 10−2

seconds [this value was obtained by averaging over 10 runs and was the same for each

SDGT run in Figure 4.14 (a)]. For comparison, the timings obtained using the SGT

and DGT algorithms for the same problem were 2.0× 10−2 and 89.0 × 10−2 seconds,

respectively. None of the 43 total escape probabilities (one for every source) deviated

from unity by more than 10−5 for temperatures above T = 0.07 (reduced units). For

lower temperatures the probability was not conserved due to numerical imprecision.

The data obtained using SDGT method is compared with results from KMC sim-

ulation, which require increasingly more CPU time as the temperature is lowered.

Figure 4.14 also shows the data for KMC simulations at temperatures 0.14, 0.15, 0.16,

0.17 and 0.18. Each KMC simulation consisted of the generation of an ensemble of

1000 KMC trajectories from which the averages were computed. The cost of each

KMC calculation is proportional to the average trajectory length, which is depicted in

Figure 4.14 (b) as a function of the inverse temperature. The CPU timings for each

of these calculations were (in the order of increasing temperature, averaged over five

randomly seeded KMC simulations): 125, 40, 18, 12, and 7 seconds. It can be seen that

using GT method we were able to obtain kinetic data for a wider range of temperatures
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Figure 4.14: (a) Arrhenius plots for the LJ38 cluster. k is the rate constant corresponding

to transitions from icosahedral-like to octahedral-like regions. Green circles represent the data

obtained from 23 SDGT runs at temperatures T ∈ {0.07, 0.075, . . . , 0.18}. The data from five

KMC runs is also shown (red squares). The data shown in blue corresponds to temperatures T ∈

{0.035, 0.04, . . . , 0.065} and was obtained using the SDGT2 method (discussed in Section 4.7.2)

with quadruple precision enabled. In all SDGT runs the total escape probabilities calculated

for every source at the end of the calculation deviated from unity by no more then 10−5. For

this PES sample the lowest temperature for which data was reported in previous works was

T = 0.08. (b) The average KMC trajectory length [data in direct correspondence with KMC

results shown in (a)]. A solid line is used to connect the data points to guide the eye.

and with less computational expense.

4.7.2 Internal Diffusion in LJ55

We have applied the graph transformation method to study the centre-to-surface atom

migration in 55-atom Lennard-Jones cluster. The global potential energy minimum

for LJ55 is a Mackay icosahedron, which exhibits special stability and ‘magic number’

properties [279, 280]. Centre-to-surface and surface-to-centre rates of migration of a

tagged atom for this system were considered in previous work [10]. In Reference [10]
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Figure 4.15: Global minimum of the LJ55 cluster (shown in stereo). The tagged atom can

occupy the central position (green) or one of the two different surface sites (red and blue).

the standard DPS procedure was applied to create and converge an ensemble of paths

linking the structure of the global minimum with the tagged atom occupying the central

position and structures where tagged atom is placed in sites that lie on fivefold and

twofold symmetry axes (Figure 4.15). We have reused this sample in the present work.

The sample contained 9907 minima and 19384 transition states. We excluded tran-

sition states that facilitate degenerate rearrangements from consideration. For minima

interconnected by more than one transition state we added the rate constants in each

direction to calculate the branching probabilities. Four digraph representations were

created with minimum degrees of 1, 2, 3 and 4 via iterative removal of the nodes with

degrees that did not satisfy the requirement. These digraphs will be referred to as

digraphs 1, 2, 3 and 4, respectively. The corresponding parameters are summarised in

Table 4.1. Since the cost of the GT method does not depend on temperature we also

quote CPU timings for the DGT, SGT and SDGT methods for each of these graphs in

the last three columns of Table 4.1. Each digraph contained two source nodes labelled

1 and 2 and a single sink. The sink node corresponds to the global minimum with

the tagged atom in the centre (Figure 4.15). It is noteworthy that the densities of
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Table 4.1: Properties of four digraphs corresponding to the LJ55 PES sample from an internal

diffusion study. |V | is the number of nodes; |E| is the number of directed edges; dmin, 〈d〉 and

dmax are the minimum, average and maximum degrees, respectively; ρ is the graph density,

defined as a ratio of the number of edges to the maximum possible number of edges; r and d

are the graph radius and diameter, defined as the maximum and minimum node eccentricity,

respectively, where the eccentricity of a node v is defined as the maximum distance between v

and any other node. 〈l〉 is the average distance between nodes. The CPU time, t, necessary to

transform each graph using the DGT, SGT and SDGT methods is given in seconds for a single

32-bit Intel R© Pentium R© 4 3.00GHz 512Kb cache processor.

|V | |E| dmin 〈d〉 dmax ρ/10−4 r 〈l〉 d tDGT tSGT tSDGT

9843 34871 1 3.9 983 3.6 10 5.71 20 2346.1 39.6 1.36

6603 28392 2 4.8 983 6.5 9 4.86 17 1016.1 38.9 1.33

2192 14172 3 7.9 873 29.5 4 3.63 8 46.9 5.9 0.49

865 7552 4 1.9 680 101.0 4 3.07 7 3.1 0.8 0.12

the graphs corresponding to both our samples (LJ38 and LJ55) are significantly lower

than the values predicted for a complete sample [115], which makes the use of sparse-

optimised methods even more advantageous. From Table 4.1 it is clear that the SDGT

approach is the fastest, as expected; we will use SDGT for all the rate calculations in

the rest of this section.

For this sample KMC calculations are unfeasible at temperatures lower than about

T = 0.3 (Here T is expressed in the units of ǫ/kB). Already for T = 0.4 the average

KMC trajectory length is 7.5× 106 (value obtained by averaging over 100 trajectories).

In previous work it was therefore necessary to use the DPS formalism, which invokes a

steady-state approximation for the intervening minima, to calculate the rate constant at

temperatures below 0.35 [10]. Here we report results that are in direct correspondence

with the KMC formulation of the problem, for temperatures as low as 0.1.

Figure 4.16 presents Arrhenius plots that we calculated using the SDGT method

for this system. The points in the green dataset are the results from seven SDGT

calculations at temperatures T ∈ {0.3, 0.35, . . . , 0.6} conducted for each of the digraphs.

The total escape probabilities, ΣG
1 and ΣG

2 , calculated for each of the two sources at
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the end of the calculation deviated from unity by no more than 10−5. For higher

temperatures and smaller digraphs the deviation was smaller, being on the order of

10−10 for digraph 4 at T = 0.4, and improving at higher temperatures and/or smaller

graph sizes.

At temperatures lower than 0.3 the probability deviated by more than 10−5 due

to numerical imprecision. This problem was partially caused by the round-off errors

in evaluation of terms 1 − Pα,βPβ,α, which increase when Pα,βPβ,α approaches unity.

These errors can propagate and amplify as the evaluation proceeds. By writing

Pα,β = 1−
∑

γ 6=α

Pγ,β ≡ 1− ǫα,β

and Pβ,α = 1−
∑

γ 6=β

Pγ,α ≡ 1− ǫβ,α,

(4.44)

and then using

1− Pα,βPβ,α = ǫα,β − ǫα,βǫβ,α + ǫβ,α (4.45)

we were able to decrease 1 − ΣG
α by several orders of magnitude at the expense of

doubling the computational cost. The SDGT method with probability denominators

evaluated in this fashion will be referred to as SDGT1.

Terms of the form 1 − Pα,βPβ,α approach zero when nodes α and β become ‘effec-

tively’ (i.e. within available precision) disconnected from the rest of the graph. If this

condition is encountered in the intermediate stages of the calculation it could also mean

that a larger subgraph of the original graph is effectively disconnected. The waiting

time for escape if started from a node that belongs to this subgraph tends to infinity.

If the probability of getting to such a node from any of the source nodes is close to

zero the final answer may still fit into available precision, even though some of the in-

termediate values cannot. Obtaining the final answer in such cases can be problematic

as division-by-zero exceptions may occur.

Another way to alleviate numerical problems at low temperatures is to stop round-

off errors from propagation at early stages by renormalising the branching probabilities

of affected nodes β ∈ Adj[γ] after node γ is detached. The corresponding check that

the updated probabilities of node β add up to unity could be inserted after line 33 of

Algorithm B.4 (see Appendix B), and similarly for Algorithm B.3. A version of SDGT

method with this modification will be referred to as SDGT2.
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Figure 4.16: Arrhenius plots for four digraphs of varying sizes (see Table 4.1) created from a

sample of the PES for the LJ55 cluster. k is the rate constant corresponding to surface-to-centre

migration of a tagged atom. Calculations were conducted at T ∈ {0.3, 0.35, . . . , 0.7} using the

SDGT method (green) and T ∈ {0.1, 0.15, . . . , 0.25} using SDGT2Q (blue). For each of the

digraphs the calculations yielded essentially identical results so data points for only one of them

are shown.

Both SDGT1 and SDGT2 have similarly scaling overheads relative to the SDGT

method. We did not find any evidence for superiority of one scheme over another.

For example, the SDGT calculation performed for digraph 4 at T = 0.2 yielded T G =

T G
1 W1 +T G

2 W2 = 6.4×10−18, and precision was lost as both ΣG
1 and ΣG

2 were less than

10−5. The SDGT1 calculation resulted in T G = 8.7 × 10−22 and ΣG
1 = ΣG

2 = 1.0428,

while the SDGT2 calculation produced T G = 8.4 × 10−22 with ΣG
1 = ΣG

2 = 0.99961.

The CPU time required to transform this graph using our implementations of the

SDGT1 and SDGT2 methods was 0.76 and 0.77 seconds, respectively.

To calculate the rates at temperatures in the interval [0.1, 0.3] reliably we used an

implementation of the SDGT2 method compiled with quadruple precision (SDGT2Q)

(note that the architecture is the same as in other benchmarks, i.e. with 32 bit wide

registers). The points in the blue dataset in Figure 4.16 are the results from 4 SDGT2Q

calculations at temperatures T ∈ {0.10, 0.35, . . . , 0.75}.
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By using SDGT2Q we were also able to improve on the low-temperature results for

LJ38 presented in the previous section. The corresponding data is shown in blue in

Figure 4.14.

4.8 Summary

The most important result of this chapter is probably the graph transformation (GT)

method. The method works with a digraph representation of a Markov chain and can be

used to calculate the first moment of a distribution of the first-passage times, as well as

the total transition probabilities for an arbitrary digraph with sets of sources and sinks

that can overlap. The calculation is performed in a non-iterative and non-stochastic

manner, and the number of operations is independent of the simulation temperature.

We have presented three implementations of the GT algorithm: sparse-optimised

(SGT), dense-optimised (DGT), and hybrid (SDGT), which is a combination of the

first two. The SGT method uses a Fibonacci heap min-priority queue to determine

the order in which the intermediate nodes are detached to achieve slower growth of the

graph density and, consequently, better performance. SDGT is identical to DGT if the

graph is dense. For sparse graphs SDGT performs better then SGT because it switches

to DGT when the density of a graph being transformed approaches the maximum. We

find that for SDGT method performs well both for sparse and dense graphs. The worst

case asymptotic scaling of SDGT is cubic.

We have also suggested two versions of the SDGT method that can be used in

calculations where a greater degree of precision is required. The code that implements

SGT, DGT, SDGT, SDGT1 and SDGT2 methods is available for download [274].

The connection between the DPS and KMC approaches was discussed in terms

of digraph representations of Markov chains. We showed that rate constants obtained

using the KMC or DPS methods can be computed using graph transformation. We have

presented applications to the isomerisation of the LJ38 cluster and the internal diffusion

in the LJ55 cluster. Using the GT method we were able to calculate rate constants at

lower temperatures than was previously possible, and with less computational expense.

We also obtained analytic expressions for the total transition probabilities for ar-

bitrary digraphs in terms of combinatorial sums over pathway ensembles. It is hoped
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that these results will help in further theoretical pursuits, e.g. these aimed at obtain-

ing higher moments of the distribution of the first passage times for arbitrary Markov

chains.

Finally, we showed that the recrossing contribution to the DPS rate constant of a

given discrete pathway can be calculated exactly. We presented a comparison between

a sparse-optimised matrix multiplication method and a sparse-optimised version of

Algorithm B.1 and showed that it is beneficial to use Algorithm B.1 because it is many

orders of magnitude faster, runs in linear time and has constant memory requirements.


