
Chapter 2

Finding Rearrangement

Pathways

Remember when life’s path is steep

to keep your mind even.

Horace (65 BC - 8 BC)

2.1 Introduction

Our principal concern in this chapter is the development of the double-ended NEB

approach [27–30]. The earliest double-ended methods were probably the linear and

quadratic synchronous transit algorithms (LST and QST) [125], which are entirely

based on interpolation between the two endpoints. In LST the highest energy structure

is located along the straight line that links the two endpoints. QST is similar in spirit,

but approximates the reaction path using a parabola instead of a straight line. Neither

interpolation is likely to provide a good estimate of the path except for very simple

reactions, but they may nevertheless be useful to generate initial guesses for more

sophisticated double-ended methods.

Another approach is to reduce the distance between reactant and product by some

arbitrary value to generate an ‘intermediate’, and seek the minimum energy of this

intermediate structure subject to certain constraints, such as fixed distance to an end-

point. This is the basis of the ‘Saddle’ optimisation method [126] and the ‘Line Then
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Plane’ [127] algorithm, which differ only in the definition of the subspace in which the

intermediate is allowed to move. The latter method optimises the intermediate in the

hyperplane perpendicular to the interpolation line, while ‘Saddle’ uses hyperspheres.

The minimised intermediate then replaces one of the endpoints and the process is re-

peated.

There are also a number of methods that are based on a ‘chain-of-states’ (CS)

approach, where several images of the system are somehow coupled together to create

an approximation to the required path. The CS methods mainly differ in the way

in which the initial guess to the path is refined. In the ‘Chain’ method [128] the

geometry of the highest energy image is relaxed first using only the component of

the gradient perpendicular to the line connecting its two neighbours. The process is

then repeated for the next-highest energy neighbours. The optimisation is terminated

when the gradient becomes tangential to the path. The ‘Locally Updated Planes’

method [129] is similar, but the images are relaxed in the hyperplane perpendicular to

the reaction coordinate, rather than along the line defined by the gradient, and all the

images are moved simultaneously.

The NEB approach introduced some further refinements to these CS methods [30].

It is based on a discretised representation of the path originally proposed by Elber and

Karplus [88], with modifications to eliminate corner-cutting and sliding-down prob-

lems [27], and to improve the stability and convergence properties [29]. Maragakis et

al. applied the NEB method to various physical systems ranging from semiconductor

materials to biologically relevant molecules. They report that use of powerful minimi-

sation methods in conjunction with the NEB approach was unsuccessful [107]. These

problems were attributed to instabilities with respect to the extra parameters intro-

duced by the springs.

The main result of the present contribution is a modified ‘doubly nudged’ elastic

band (DNEB) method, which is stable when combined with the L-BFGS minimiser. In

comparing the DNEB approach with other methods we have also analysed quenched

velocity Verlet minimisation, and determined the best point at which to remove the

kinetic energy. Extensive tests show that the DNEB/L-BFGS combination provides

a significant performance improvement over previous implementations. We therefore



2.2. A Double-ended Method: Nudged Elastic Band 9

outline a new strategy to connect distant minima, which is based on successive DNEB

searches to provide transition state candidates for refinement by eigenvector-following.

2.2 A Double-ended Method: Nudged Elastic Band

In the present work we used the nudged elastic band [27, 28] (NEB) and eigenvector-

following [12–19, 22–24] (EF) methods for locating and refining transition states. In the

NEB approach the path is represented as a set of images {X1,X2...XNi
} that connect

the endpoints X0 and XNi+1, where Xi is a vector containing the coordinates of image

i (Figure 2.1) [29]. In the usual framework of double-ended methodologies [130] the

endpoints are stationary points on the PES (usually minima), which are known in

advance. In addition to the true potential, Vi, which binds the atoms within each

image, equivalent atoms in Ni adjacent images are interconnected by Ni + 1 springs

according to a parabolic potential,

Ṽ = 1
2
kspr

Ni+1∑

i=1

|Xi − Xi−1|
2. (2.1)

Subsequently these potentials will be referred to as the ‘true potential’ and the ‘spring

potential’, respectively.

The springs are intended to hold images on the path during optimisation — oth-

erwise they would slide down to the endpoints, or to other intermediate minima [88].

Occasionally, depending on the quality of the initial guess, we have found that some

images may converge to higher index stationary points. One could imagine the whole

construction as a band or rope that is stretched across the PES, which, if optimised,

is capable of closely following a curve defined in terms of successive minima, transition

states, and the intervening steepest-descent paths.

In practice, the above formulation encounters difficulties connected with the cou-

pling between the ‘true’ and ‘spring’ components of the potential. The magnitude of

the springs’ interference with the true potential is system dependent and generally gives

rise to corner-cutting and sliding-down problems [27]. It is convenient to discuss these

difficulties in terms of the components of the true gradient, g, and spring gradient, g̃,

parallel and perpendicular to the path. The parallel component of the gradient g‖ at

image i on the path is obtained by projecting out the perpendicular component g⊥ us-
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Figure 2.1: Graphical representation of the nudged elastic band approach. (a) The optimised

nudged elastic band for a two-dimensional model surface. The band contains 21 images and

connects two minima X0 and X23. Image X9 has the highest energy and might therefore

be used to estimate transition state properties or as a starting guess for further refinement.

(b) ‘Nudging’: the NEB depicted in (a) is projected onto the xy plane and feels only the

perpendicular component of the true gradient from the effective potential V ⊥.
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ing an estimate of the tangent to the path. The parallel and perpendicular components

for image i are:

g
‖
i = (▽iVi, τ̂ i) τ̂ i, g⊥

i = ▽iVi − g
‖
i , (2.2)

where Vi = V (Xi), the unit vector τ̂ i is the tangent, and (▽iVi, τ̂ i) denotes the scalar

product of vectors ▽iVi and τ̂ i. Here and throughout this work we denote unit vectors

by a hat. The complete gradient, g, has Ni × η components for a band of Ni images

with η atomic degrees of freedom each.

Corner-cutting has a significant effect when a path experiences high curvature.

Here g̃⊥ is large, which prevents the images from following the path closely because the

spring force necessarily has a significant component perpendicular to the tangent. The

sliding-down problem occurs due to the presence of g‖, which perturbs the distribution

of images along the path, creating high-resolution regions (around the local minima)

and low-resolution regions (near the transition states) [27]. Both problems significantly

affect the ability of the NEB method to produce good transition state candidates. We

have found that sliding-down and corner-cutting are interdependent and cannot both

be remedied by adjusting the spring force constant kspr; increasing kspr may prevent

sliding-down but it will make corner-cutting worse.

The aforementioned problems can sometimes be eliminated by constructing the

NEB gradient from the potential in the following way: g‖ and g̃⊥ are projected out,

which gives the elastic band its ‘nudged’ property [28]. Removal of g‖ can be thought of

as bringing the path into a plane or flattening the PES [Figure 2.1 (b)], while removal

of g̃⊥ is analogous to making the images heavier so that they favour the bottom of the

valley at all times.

The choice of a method to estimate the tangent to the path is important for it

affects the convergence of the NEB calculation. Originally, the tangent vector, τ̂ i, for

image i was obtained by normalising the line segment between the two adjacent images,

i + 1 and i − 1 [27]:

τ̂ i =
Xi+1 − Xi−1

|Xi+1 − Xi−1|
. (2.3)

However, kinks can develop during optimisation of the image chain using this definition

of τ̂ i. It has been shown [29] that kinks are likely to appear in the regions where the

ratio g
‖
i /g

⊥
j is larger than the length of the line segment, |τ |, used in estimating the
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tangent [Figure 2.2 (a)].

Both the above ratio, the image density and |τ̂ | can vary depending on the system

of interest, the particular pathway and other parameters of the NEB calculation. From

Equation 2.3 it can be seen that τ̂ i, and, hence, the next step in the optimisation of

image i, is determined by its neighbours, which are not necessarily closer to the path

than image i. Therefore, a better approach in estimating the τ̂ i would be to use only

one neighbour, since then we only need this neighbour to be better converged than

image i.

There are two neighbours to select from, and it is natural to use the higher-energy

one for this purpose, since steepest-descent paths are easier to follow downhill than

uphill:

τ̂ i =
(j − i) (Xj − Xi)

|Xj −Xi|
, (2.4)

where i and j are two adjacent images with energies Vi and Vj , and Vi < Vj. In this

way, an image i that has one higher-energy neighbour j behaves as if it is ‘hanging’ on

to it [Figure 2.2(b)].

The above tangent formulation requires special handling of extrema along the path,

and a mechanism for switching τ̂ at such points was proposed [29]. It also fails to

produce an even distribution of images in regions with high curvature [Figure 2.2 (c)].

We presume that Henkelman and Jónsson substitute (g̃, τ̂ ) τ̂ by |g̃|τ̂ in Equation 2.2

to obtain a spring gradient formulation that will keep the images equispaced when the

tangent from Equation 2.4 is used in the projections [28]:

g̃
‖
i = kspr

(
|Xi − Xi−1| − |Xi+1 − Xi|

)
τ̂ i. (2.5)

2.3 Optimisation of the Nudged Elastic Band

In the present work the NEB approach has been used in combination with two min-

imisers, namely the quenched velocity Verlet (QVV) and the limited-memory Broyden-

Fletcher-Goldfarb-Shanno (L-BFGS) algorithms. It is noteworthy that the objective

function corresponding to the projected NEB gradient is unknown, but it is not actually

required in either of the minimisation algorithms that we consider.

Optimisation is a general term that refers to finding stationary points of a function.

Many problems in computational chemistry can be formulated as optimisation of a
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Figure 2.2: Details of recent NEB implementations. (a) Conditions under which kinks appear

during optimisation of the NEB using the tangent estimated from the line segment τ̂ connecting

images i + 1 and i− 1. Displacement of image i from the path (dash-dotted line) creates forces

F⊥
i−1

= −g⊥
i−1

and F⊥
i = −g⊥

i . While F⊥
i is a restoring force that originates from V ⊥, F⊥

i−1

is destabilising and originates from V ‖ (and is non-zero due to the fact that the tangent at

image i− 1 has changed after displacement of image i). For the case of small displacements the

potential may be resolved into two contributions, V ⊥ = k⊥x2/2 and V ‖ = −k‖y, and kinks will

not appear if k‖/k⊥ < |τ̂ |. (b) Tangent estimate using the higher energy neighbour: image i+1

is ‘hanging’ on to image i. The separation d is controlled by the lower-lying images (> i + 1)

but not V . (c) An NEB that follows the curved region of the path: since the spring force F1

acting on image i is compensated by projection F2, the distribution of images becomes uneven.

(d) Corner-cutting displayed on a cross-section of the curved part of the path depicted in (c):

the image is displaced from the path due to the presence of F⊥
spr .
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multidimensional function, NEB optimisation being one of the many. The goal of an

optimisation problem can be formulated as follows: find a combination of parameters

(independent variables) that optimise a given quantity (the objective function), possibly

with some restrictions on the allowed parameter ranges [131]. To know exactly what

we are looking for optimality conditions need to be defined. The condition

f(x∗) < f(y) ∀y ∈ ℧ (x) ,y 6= x∗, (2.6)

where ℧ (x) is the set of all possible values of the control variable x = (x1, x2, ...xn)T ,

defines the global optimum x∗ of the function f(x). For an unconstrained problem ℧ (x)

is infinitely large, and finding the corresponding global minimum may be a difficult task.

Similarly, a point x∗ is a strong local minimum of f(x) if

f(x∗) < f(y) ∀y ∈ Υ (x∗, ε) ,y 6= x∗, (2.7)

where Υ (x∗, ε) is a set of feasible points contained in the neighbourhood ε of x∗. For a

weak local minimum only an inequality f(x∗) 6 f(y) must be satisfied in Equation 2.7.

More easily identified optimality conditions could be used instead of Equation 2.6

and Equation 2.7 if f(x) is a function with continuous first and second derivatives,

namely, the stationary point and the strong local minimum conditions. A stationary

point is a point where the gradient vanishes:

gi (x) =
∂f(x)

∂xi
= 0, (2.8)

and a strong local minimum is a stationary point where the Hessian matrix

[H (x)]ij =
∂2f (x)

∂xi∂xj
(2.9)

is positive-definite:

zTH (x) z > 0 ∀z 6= 0. (2.10)

Formally, optimisation of an NEB qualifies as a nonlinear unconstrained continuous

multivariable optimisation problem. There are many algorithms available for solving

problems of this type that differ in their computational requirements, convergence and

other properties. However, NEB optimisation is augmented with an additional diffi-

culty: due to the projections involved the objective function that is being minimised
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is unknown. Nevertheless, several optimisation techniques were found to be stable in

working with NEB. Most of these are based on steepest-descent methods and, conse-

quently, are not very efficient. The L-BFGS and QVV minimisers discussed in this

section are based on the deterministic approach for finding local minima.

The basic structure of any local minimiser can be summarised as follows:

• guess initial geometry x0;

• for i = 1,2,... until convergence criterion is satisfied:

1. test if convergence is achieved for current geometry xi

2. construct the search direction p̂i

3. determine the step length ̟i

4. update the geometry to xi + ̟ip̂i

The descent direction p̂ is defined as the one along which the directional derivative is

negative:
(
g (x) , p̂

)
< 0. (2.11)

Negativity of the left hand side guarantees that a lower function value will be found

along p̂ provided that the step is sufficiently small. According to the way algorithms

choose the search direction they are classified as non-derivative, gradient and second-

derivative. Steepest-descent is an example of a gradient-based method, while BFGS

belongs to the class of quasi-Newton methods (or quasi-second-derivative methods).

The steepest-descent search direction is defined as the direction antiparallel to the

gradient at the current point

p̂ = −ĝ, (2.12)

whereas second-derivative-based methods determine the search direction using the

Newton-Raphson equation [31]:

p = −H−1g. (2.13)

The step length ̟ can be determined using either ‘line search’ or ‘trust radius’

approaches. Line search is essentially a one-dimensional minimisation of the function

f̃(̟) = f(xi + ̟pi), which is performed at every step [131]. In the trust-radius-

based approach the step length is adjusted dynamically depending on how well the
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minimisation algorithm predicts the change in the object function value [9]. There

is no clear evidence for the superiority of one method over the other [131]; however,

in combination with the limited-memory version of BFGS algorithm the trust ratio

approach was found to be more efficient for treating problems with discontinuities such

as problems involving periodic boundary conditions with cutoffs [9].

2.3.1 Quenched Velocity Verlet Minimiser

The QVV method is based on the velocity Verlet algorithm [32] (VV) as modified by

Jónsson et al. [27], and was originally used for NEB optimisation. VV is a symplectic

integrator that enjoys widespread popularity, primarily in molecular dynamics (MD)

simulations where it is used for numerical integration of Newton’s equations of motion.

Its main advantage over the standard Verlet method is the minimisation of the round-

off errors. At each time step δt the coordinates and the velocities V are updated from

the coupled first-order differential equations in the following manner [32]:

X (t + δt) = X (t) + δtV (t) −
δt2

2m
g (t) , (2.14)

V

(
t +

1

2
δt

)
= V (t) −

δt

2m
g (t) , (2.15)

V (t + δt) = V

(
t +

1

2
δt

)
−

δt

2m
g (t + δt) , (2.16)

where m is the atomic mass. The algorithm involves two stages, with a force evaluation

in between. First the positions are updated according to Equation 2.14, and the veloc-

ities at midstep t + δt/2 are then computed using Equation 2.15. After the evaluation

of the gradient at time t + δt the velocity is updated again [Equation 2.16] to complete

the move. To obtain minimisation it is necessary to remove kinetic energy, and this

can be done in several ways. If the kinetic energy is removed completely every step the

algorithm is equivalent to a steepest-descent minimisation, which is rather inefficient.

Instead, it was proposed by Jónsson et al. [27] to keep only the velocity component that

is antiparallel to the gradient at the current step. If the force is consistently pointing

in the same direction the system accelerates, which is equivalent to increasing the time

step [27]. However, a straightforward variable time step version of the above algorithm

was reported to be unsuccessful [110].
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2.3.2 L-BFGS Minimiser

The BFGS algorithm belongs to the class of variable metric methods and is slightly

different from the Davidon-Fletcher-Powell (DFP) method in the way in which the

correction term is constructed [132] (see below). It has become generally recognised

that the BFGS algorithm is superior to DFP in convergence tolerances, roundoff error

and other empirical issues [31]. The idea of the variable metric, or quasi-Newton,

method is to build up a good approximation to the inverse Hessian matrix H−1 by

constructing a sequence of matrices {A1,A2,A3, . . . } with the following property:

lim
i→∞

Ai = H−1. (2.17)

If we are successful in doing so, combining two Newton-Raphson equations (see Equa-

tion 2.13) for consecutive iterations i and i + 1, we find that Ai+1 should satisfy

xi+1 − xi = ̟ip̂i = −Ai+1 (gi+1 − gi) , (2.18)

where we have used the property Ai+1 = Ai, which must hold if both xi and xi+1 are

in the neighbourhood of minimum x∗.

At every iteration i the new approximation to the inverse Hessian Ai+1 should be

constructed in order to calculate the next step. The update formula must be consistent

with Equation 2.18 and could take the form

Ai+1 = Ai + Ã, (2.19)

where the correction term Ã is constructed using the gradient difference δg = gi+1−gi,

the step δx = xi+1−xi, and the inverse Hessian matrix from the previous iteration Ai.

The BFGS update correction is [31]

Ã =
δx ⊗ δx

(δx, δg)
−

u⊗ u

(δg,u)
+ (δg,u)

[(
δx

(δx, δg)
−

u

(δg,u)

)
⊗

(
δx

(δx, δg)
−

u

(δg,u)

)]
,

(2.20)

where ⊗ denotes the direct product of two vectors, and u = Hiδg.

Since at every iteration the old Hessian is overwritten with a new one n2/2 + n/2

storage locations are needed. This is an entirely trivial disadvantage over the conjugate

gradient methods for any modest value of n [31]. However, for large-scale problems it

is advantageous to be able to specify the amount of storage BFGS is allowed to use.
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There is a version of the BFGS algorithm that allows us to vary the amount of

storage available to BFGS and is particularly suitable for large-scale problems [2]. The

difference between this limited memory BFGS (L-BFGS) algorithm and the standard

BFGS is in the Hessian matrix update. L-BFGS stores each correction separately and

the Hessian matrix is never formed explicitly. To store each correction to the Hessian

2n storage locations are needed [1]. The user can specify the number of corrections

L-BFGS is allowed to store. Every iteration Ag is computed according to a recursive

formula described by Nocedal [1]. For the first m iterations L-BFGS is identical to the

BFGS method. After the first m iterations the oldest correction is discarded. Thus,

by varying m the iteration cost can also be controlled, which makes the method very

efficient and flexible. In general, because only m recent corrections are stored L-BFGS

is better able to use additional storage to accelerate convergence. Here we employed a

modified version of Nocedal’s L-BFGS implementation [3] in which the line search was

removed and the maximum step size was limited for each image separately.

2.4 A Single-ended Method: Eigenvector-following

Single-ended methods use only the function and its derivatives to search for a transition

state from the starting point (the initial guess). Since a transition state is a local

maximum in one direction but a minimum in all the others it is not generally possible

to use standard minimisation methods for this purpose.

Newton-type optimisation methods are based on approximating the objective func-

tion locally by a quadratic model and then minimising that function approximately

using, for example, the Newton-Raphson (NR) approach [31]. However, the NR algo-

rithm can converge to a stationary point of any index [130]. To converge to a transition

state the algorithm may need to start from a geometry at which the Hessian has exactly

one negative eigenvalue and the corresponding eigenvector is at least roughly parallel

to the reaction coordinate. Locating such a point can be a difficult task and several

methods have been developed that help to increase the basins of attraction of transition

states, which gives more freedom in choosing the starting geometry [9, 19, 22, 24].

The most widely used single-ended transition state search method is eigenvector-

following (EF). In it simplest form it requires diagonalisation of the Hessian matrix [12–
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15]. For larger systems it is advantageous to use hybrid EF methods that avoid either

calculating the Hessian or diagonalising it [8, 22, 23, 133].

We start by reviewing the theory behind the Newton-Raphson methods. Solving

the eigenvalue problem

HC = CΛ (2.21)

yields the matrix C, the columns of which are the eigenvectors ci, and the diagonal

matrix Λ, with eigenvalues λi on the diagonal. The matrix C defines a unitary trans-

formation to a new orthogonal basis {ci}, in which the original Hessian matrix H is

diagonal

C−1HC = Λ, (2.22)

so that Equation 2.13 is simplified to

p′i = −
g′i
λi

, (2.23)

where g′ is the gradient vector in the new basis, which is related to the original gradient

vector g as

g′ = CTg, (2.24)

because of the unitarity of C

C−1 = CT . (2.25)

The unnormalised search direction p′ is defined similarly.

After taking a step of length ̟ = |p| in the direction p, as prescribed by Equa-

tion 2.23, the energy changes by

∆V ′ = −
1

2
g′Λ−1g′ (2.26)

provided our quadratic approximation to V (X) is perfect. In general λi ∈ R and terms

in Equation 2.26 with λi < 0 and λi > 0 increase and decrease the energy, respectively.

For isolated molecules and bulk models with periodic boundary conditions the Hessian

matrix is singular: there are three zero eigenvalues that correspond to overall trans-

lations. Non-linear isolated molecules have three additional zero eigenvalues due to

rotations. Luckily, in all cases for which λi = 0 the analytic form of the corresponding

eigenvectors ci is known so the eigenvalue shifting procedure could be applied:

H′ = H +
∑

i

λ̃ici ⊗ cT
i , (2.27)
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where λ̃i are the new eigenvalues. In this work all the zero eigenvalues were shifted

by the same amount (106). As a result, detH′ 6= 0 and problems with applying Equa-

tion 2.23 do not arise.

The analytic forms of the ci’s corresponding to translations along the x, y and z

directions are

ĉ1 =

√
1

N




1

0

0

1

0

0
...




, ĉ2 =

√
1

N




0

1

0

0

1

0
...




, and ĉ3 =

√
1

N




0

0

1

0

0

1
...




, (2.28)

respectively. The eigenvector that corresponds to rotation about the x axis by a small

angle φ can be obtained as

ĉ4 = R̃xx̂ − x̂, (2.29)

where x̂ = (x1, y1, z1, x2, . . . )
T is a normalised 3N -dimensional vector describing the po-

sition before the rotation, and R̃x is Maclaurin series expansion of the 3N -dimensional

rotation matrix [134] Rx with respect to a small angle φ truncated to the second order.

The displacement vectors due to infinitesimal rotation about the x, y and z axes are

therefore

ĉ4 =




0

−
φ2

2
y1 + φz1

−φy1 −
φ2

2
z1

0

−
φ2

2
y2 + φz2

−φy2 −
φ2

2
z2

...




, ĉ5 =




−
φ2

2
x1 − φz1

0

φx1 −
φ2

2
z1

−
φ2

2
x2 − φz2

0

φx2 −
φ2

2
z2

...




, and ĉ6 =




−
φ2

2
x1 + φy1

−φx1 −
φ2

2
y1

0

−
φ2

2
x2 + φy2

−φx2 −
φ2

2
y2

0
...




,

(2.30)

respectively.

If started from a point at which the Hessian matrix has n negative eigenvalues, the
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NR method is expected to converge to a stationary point of index n. However, the step

taking procedure may change the index as optimisation proceeds.

Introducing Lagrange multipliers allows a stationary point of specified index to be

located. Consider a Lagrangian function

L = −V ′(x′
0) −

3N∑

α=1

[
g′α(x′

0) p′α +
1

2
λα p′

2
α −

1

2
µα(p′

2
α − c2

α)

]
, (2.31)

where a separate Lagrange multiplier µα is used for every eigendirection α, cα is a

constraint on the step p′α, λα is the αth eigenvalue of H′, which is defined in Equa-

tion 2.27, and x′
0 is the point about which the potential energy function V ′(x) was

expanded. Primes, as before, denote that components are expressed in the orthogonal

basis. Differentiating Equation 2.31 with respect to p′ and using the condition for a

stationary point the optimal step can be obtained:

p′α =
g′α(x′

0)

µα − λα
. (2.32)

The predicted energy change corresponding to this step is

∆V ′ =

3N∑

α=1

(µα − λα/2)

(µα − λα)2
g′α(x′

0)
2. (2.33)

We have some freedom in choosing the Lagrange multipliers µα as long as for the

eigendirections for which an uphill (downhill) step is to be taken µα > λα/2 (µα <

λα/2). The following choice of Lagrange multipliers allows the recovery of the Newton-

Raphson step in the vicinity of a stationary point [9]:

µα = λα ±
1

2
|λα|

(
1 +

√
1 + 4g′α(x′

0)
2/λ2

α

)
, (2.34)

with the plus sign for an uphill step, and the minus sign for a downhill step.

In cases when Hessian diagonalisation is impossible or undesirable the smallest

eigenvalue and a corresponding eigenvector can be found using an iterative method [135].

2.5 Results

The springs should distribute the images evenly along the NEB path during the op-

timisation, and the choice of kspr must be made at the beginning of each run. It has

been suggested by Jónsson and coworkers that since the action of the springs is only
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felt along the path the value of the spring constant is not critical as long as it is not

zero [27]. If kspr is set to zero then sensible behaviour occurs for the first several tens

of iterations only; even though g‖ is projected out, τ̂ fluctuates and further optimi-

sation will eventually result in the majority of images gradually sliding down to local

minima [27].

2.5.1 Slow-response Quenched Velocity Verlet

In practice we find that the value of kspr affects the convergence properties and the

stability of the optimisation process. This result depends on the type of minimiser

employed and may also depend on minimiser-specific settings. Here we analyse the

convergence properties of NEB minimisations using the QVV minimiser (NEB/QVV)

and their dependence on the type of velocity quenching. From previous work it is

not clear when is the best time to perform quenching during the MD minimisation of

the NEB [27–29]. Since the VV algorithm calculates velocities based on the gradients

at both current and previous steps quenching could be applied using either of these

gradients.

Specifically, it is possible to quench velocities right after advancing the system us-

ing Equation 2.14, at the half-step in the velocity evaluation (quenching intermediate

velocities at time t+ δt/2) using either the old or new gradient [Equation 2.15], or after

completion of the velocity update. In Figure 2.4 we present results for the stability of

NEB/QVV as a function of the force constant parameter for three of these quenching

approaches. We will refer to an NEB optimisation as stable for a certain combination

of parameters (e.g. time integration step, number of images) if the NEB steadily con-

verges to a well-defined path and/or stays in its proximity until the maximal number

of iterations is reached or the convergence criterion is satisfied.

We have performed some of the tests on the Müller-Brown (MB) two-dimensional

surface [25]. This widely used surface does not present a very challenging or realistic

test case, but if an algorithm does not behave well for this system it is unlikely to be

useful. MB potential is defined as a sum of four terms, each of which takes the form

Vi(x, y) = α exp
[
a (x − x0)

2 + b (x − x0) (y − y0) + c (y − y0)
2
]
, (2.35)

where x and y are variables and α, a, b, c, x0 and y0 are parameters. In the form



2.5. Results 23

−1.5 −1.0
−0.5

−0.5

0.0

0.0

0.5

0.5

1.0

1.0

1.5

2.0

x

y

Figure 2.3: A contour plot of Müller-Brown surface [25]. Transition states are designated

with green circles.

Vi(α, a, b, c, x0 , y0) these parameters can be written down as V1(−200,−1, 0,−10, 1, 0),

V2(−100,−1, 0,−10, 0, 0.5), V3(−170,−6.5, 11,−6.5,−0.5, 1.5) and V4(15, 0.7, 0.6, 0.7,−1, 1).

A contour plot of Müller-Brown surface is depicted in Figure 2.3.

Figure 2.4 shows the results of several thousand optimisations for a 17-image band

with the MB two-dimensional potential [25] using QVV minimisation and a time step of

0.01 (consistent units) for different values of kspr. Each run was started from the initial

guess obtained using linear interpolation and terminated when the root-mean-square

(RMS) gradient became less than 0.01. We define the RMS gradient for the NEB as

g⊥RMS =

√∑Ni

i=1|g
⊥
i |

Niη
(2.36)

where Ni is the number of images in the band and η is the number of atomic degrees

of freedom available to each image.

It seems natural to remove the velocity component perpendicular to the gradient
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Figure 2.4: (a) Number of iterations, ℓ, and (b) average deviation from the average image

separation, ς, as a function of the spring force constant, kspr , obtained using a 17-image NEB

on the Müller-Brown surface [25]. Minimisation was performed using QVV with time step

0.01 and RMS force termination criterion 0.01. The number of iterations is shown for velocity

quenching after the coordinate update (diamonds), after the gradient evaluation (squares) and

at the half-step through the velocities update (stars).
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at the current point when the geometry X (t), gradient g (t) and velocity V (t) are

available, i.e.

VQ (t) =
(
V (t) , ĝ (t)

)
ĝ (t) , (2.37)

where VQ (t) is the velocity vector after quenching. However, we found this approach

to be the least stable of all — the optimisation was slow and convergence was very

sensitive to the magnitude of the time step. Hence we do not show any results for this

type of quenching.

From Figure 2.4 (a) we see that the best approach is to quench the velocity after the

coordinate update. The optimisation is then stable for a wide range of force constant

values, and the images on the resulting pathway are evenly distributed. In this quench-

ing formulation the velocity response to a new gradient direction is retarded by one step

in coordinate space: the step is still taken in the direction V (t) but the corresponding

velocity component is removed. To implement this slow-response QVV (SQVV) it is

necessary to modify the VV algorithm described in Section 2.5.1 by inserting Equa-

tion 2.37 in between the two stages described by Equation 2.14 and Equation 2.15.

The second-best approach after SQVV is to quench the velocity at midstep t+ δt/2

using the new gradient. On average, this algorithm takes twice as long to converge

the NEB to a given RMS gradient tolerance compared to SQVV. However, the method

is stable for the same range of spring force constant values and produces a pathway

in which the images are equispaced more accurately than the other formulations [see

Figure 2.4 (b)].

The least successful of the three QVV schemes considered involves quenching ve-

locities at mid-step using the gradient from the previous iteration (stars in Figure 2.4).

Even though the number of iterations required is roughly comparable to that obtained

by quenching using the new gradient, it has the smallest range of values for the force

constant where it is stable. Some current implementations of NEB [136, 137] (intended

for use in combination with electronic structure codes) use this type of quenching in

their QVV implementation.

We have also conducted analogous calculations for more complicated systems such

as permutational rearrangements of Lennard-Jones clusters. The results are omitted

for brevity, but agree with the conclusions drawn from the simpler 2D model described
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above. The same is true for the choice of force constant investigated in the following

section.

2.5.2 Choice of the Force Constant

We find that if the force constant is too small many more iterations are needed to

converge the images to the required RMS tolerance, regardless of the type of quenching.

In addition, the path exhibits a more uneven image distribution. This result occurs

because at the initial stage the images may have very different gradients from the true

potential along the band, because they lie far from the required path, and the gradient

of the true potential governs the optimisation. When the true RMS force is reduced

the springs start to play a more important role. But at this stage the forces are small

and so is the QVV step size. The influence of the springs is actually most important

during the initial optimisation stage, for it can determine the placement of images

in appropriate regions. It is less computationally expensive to guide an image into

the right region at the beginning of an optimisation than to restore the distribution

afterwards by dragging it between two minima through a transition state region.

If kspr is too big the NEB never converges to the required RMS gradient tolerance

value. Instead, it stays in proximity to the path but develops oscillations: adjacent

images start to move in opposite directions. For all types of quenching we observed

similar behaviour when large values of the force constant were used. This problem is

related to the step in coordinate space that the optimiser is taking: for the SQVV case

simply decreasing the time step remedies this problem.

2.5.3 Comparison of SQVV and L-BFGS Minimisers for the MB Surface

We tested the NEB/L-BFGS method by minimising a 17-image NEB for the two-

dimensional Müller-Brown surface [25]. Our calculations were carried out using the

OPTIM program [138]. The NEB method in its previous formulation [28] and a modified

L-BFGS minimiser [9] were implemented in OPTIM in a previous discrete path sampling

study [8]. We used the same number of images, initial guess and termination criteria

as described in Section 2.5.1 to make the results directly comparable.

Figure 2.5 shows the performance of the L-BFGS minimiser as a function of kspr.
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We used the following additional L-BFGS specific settings. The number of corrections

in the BFGS update was set to m = 4 (Nocedal’s recommendation for the number of

corrections is 3 6 m 6 7, see Reference [3]), the maximum step size was 0.1, and we

limited the step size for each image separately, i.e.

|pj | 6 0.1, (2.38)

where pj is the step for image j. The diagonal elements of the inverse Hessian were

initially set to 0.1.

From Figure 2.5 it can be seen that the performance of L-BFGS minimisation

is relatively independent of the choice of force constant. All the optimisations with

30 6 kspr 6 10, 000 converged to the steepest-descent path, and, for most of this range,

in less than 100 iterations. This method therefore gives roughly an order of magnitude

improvement in speed over SQVV minimisation [see Figure 2.4 (a)].

We found it helpful to limit the step size while optimising the NEB with the L-BFGS

minimiser. The magnitude and direction of the gradient on adjacent images can vary

significantly. Taking bigger steps can cause the appearance of temporary discontinuities

and kinks in the NEB. The NEB still converges to the correct path, but it takes a while

for these features to disappear and the algorithm does not converge any faster.

2.5.4 Doubly Nudged Elastic Bands

The NEB/QVV approach has previously been systematically tested on systems with

around η = 100 degrees of freedom [107]. However, in the majority of cases these

test systems could be divided into a ‘core’ and a smaller part that actually changes

significantly. The number of active degrees of freedom is therefore significantly smaller

than the total number in these tests. For example, prototropic tautomerisation of

cytosine nucleic acid base (η = 33) involves motion of one hydrogen atom along a

quasi-rectilinear trajectory accompanied by a much smaller distortion of the core.

We have therefore tested the performance of the NEB/SQVV and NEB/L-BFGS

schemes for more complicated rearrangements of Lennard-Jones (LJ) clusters to vali-

date the results of Section 2.5.2, and to investigate the stability and performance of

both approaches when there are more active degrees of freedom. Most of our test cases

involve permutational isomerisation of the LJ7, LJ38 and LJ75 clusters. These examples



2.5. Results 28

kspr/10
3

kspr/10
3

ℓ

ς,%
2

2

4

4

6

6

8

8

60

80

100

120

140

0.02

0.04

0.06

0.08

(a)

(b)

Figure 2.5: (a) Number of iterations, ℓ, and (b) average deviation from average image sep-

aration, ς, as a function of the spring force constant, kspr , obtained using a 17-image NEB

for the Müller-Brown surface [25]. Minimisation was performed using L-BFGS with number of

corrections m = 4, maximum step size 0.1 and RMS force termination criterion 0.01.
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include cases with widely varying separation between the endpoints, integrated path

length, number of active degrees of freedom and cooperativity.

Permutational rearrangements are particularly interesting because it is relatively

difficult to produce an initial guess for the NEB run. In contrast, linear interpolation

between the endpoints was found to provide a useful initial guess for a number of simpler

cases [27]. For example, it was successfully used to construct the NEB for rearrange-

ments that involve one or two atoms following approximately rectilinear trajectories,

and for migration of a single atom on a surface [107]. For more complex processes

an alternative approach adopted in previous work is simply to supply a better initial

guess ‘by hand’, e.g. construct it from the images with unrelaxed geometries contain-

ing no atom overlaps [107]. The ‘detour’ algorithm described in previous calculations

that employ the ridge method could also be used to avoid ‘atom-crashing’ in the initial

interpolation [93].

It has previously been suggested that it is important to eliminate overall rotation

and translation (ORT) of each image during the optimisation of an NEB [27]. We have

implemented this constraint in the same way as Jónsson et al., by freezing one atom,

restricting the motion of a second atom to a plane, and constraining the motion of a

third atom to a line by zeroing the appropriate components of the NEB gradient.

We were able to obtain stable convergence in NEB/L-BFGS calculations only for

simple rearrangements, which confirms that straightforward L-BFGS optimisation of

the NEB is unstable [107]. Figure 2.6 shows the performance of the NEB/SQVV [Fig-

ure 2.6 (a)] and NEB/L-BFGS [Figure 2.6 (b)] approaches for one such rearrangement.

These calculations were carried out using a 7-image NEB both with (diamonds) and

without (stars) removing ORT for isomerisation of an LJ7 cluster (global minimum →

second-lowest minimum). The number of iterations, ℓ, is proportional to the number

of gradient evaluations regardless of the type of minimiser. Hence, from Figure 2.6 we

conclude that for this system NEB/L-BFGS is faster than NEB/SQVV by approxi-

mately two orders of magnitude. However, removal of ORT leads to instability in the

NEB/L-BFGS optimisation: the images do not stay in proximity to the required path

for long and instead diverge from it [see inset in Figure 2.6 (b)].

By experimentation we have found that the main source of the instabilities is the
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Figure 2.6: RMS gradient g⊥
RMS

as a function of iteration number ℓ. A 7-image NEB was used

to model an isomerisation path in the LJ7 cluster (global minimum → second-lowest minimum).

Minimisation was performed using the SQVV (a) and L-BFGS (b) methods. Results are shown

for minimisations with and without removing overall rotation and translation (diamonds and

stars, respectively). The inset in (a) depicts the average deviation from the average image

separation, ς, as a function of iteration number for minimisations using SQVV, while the inset

in (b) shows g⊥
RMS

recorded for 1000 iterations of L-BFGS minimisations. These calculations

were all continued for a fixed number of iterations, regardless of convergence.
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complete removal of g̃⊥. Instead, the inclusion of some portion of g̃⊥ in the NEB

gradient, i.e.

gNEB = g⊥ + g̃‖ + g̃∗, (2.39)

where g̃∗ = ξg̃⊥, makes the NEB/L-BFGS calculations stable but introduces some ad-

ditional corner-cutting, as well as an extra parameter, ξ. Since we use the transition

state candidates from NEB as starting points for further EF calculations the corner-

cutting is not a drawback as long as the transition state candidates are good enough.

By adjusting ξ in the range of (0.01, 0.1) we were able to achieve satisfactory perfor-

mance for the NEB/L-BFGS method in a number of cases. However, an alternative

modification, described below, proved to be even more successful.

The drawback of the NEB gradient described by Equation 2.39 stems from the

interference of g⊥ and ξg̃⊥, and becomes particularly noticeable when the projection

of ξg̃⊥ on g⊥ and g⊥ itself are of comparable magnitude. This problem is analogous to

the interference of g and g̃ in the original elastic band method, which was previously

solved by ‘nudging’ [28]. We have therefore constructed the gradient of a new ‘doubly’

nudged elastic band (DNEB) using

g̃∗ = g̃⊥ − (g̃⊥, ĝ⊥)ĝ⊥. (2.40)

In this formulation some corner-cutting may still occur because the images tend to move

cooperatively during optimisation; the spring gradient g̃⊥
DNEB acting on one image can

still indirectly interfere with the true gradients of its neighbours. In our calculations

this drawback was not an issue, since we are not interested in estimating properties

of the path directly from its discrete representation. Instead we construct it from

steepest-descent paths calculated after converging the transition states tightly using

the EF approach. We have found DNEB perfectly adequate for this purpose.

We have implemented DNEB method in our OPTIM program [138]. Equation 2.2

was used to obtain components of both spring gradient and true gradient, Equation 2.4

to calculate pathway tangent, and Equations 2.39-2.40 to evaluate the final DNEB

gradient. We note that although we employed the improved tangent from Equation 2.4,

we did not use Equation 2.5 to obtain g̃‖. This implementation detail was not clarified

in Reference [7], and we thank Dr. Dominic R. Alfonso for pointing that out.
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We have also tested a number of approaches that might be useful if one wants

to produce a full pathway involving a number of transition states for a complicated

rearrangement in just one NEB run. One of these, for instance, is a gradual removal of

the g̃∗ component from the NEB gradient once some convergence criterion is achieved.

This removal works remarkably well, particularly in situations with high energy initial

guesses, which occur frequently if the guessing is fully automated. This adjustment can

be thought of as making the band less elastic in the beginning in order to resolve the

highest-energy transition state regions first.

2.5.5 Comparison of the DNEB/L-BFGS and DNEB/SQVV Methods for

Permutational Isomerisations of LJ7

It is sometimes hard to make a direct comparison of different double-ended methods for

a particular rearrangement because the calculations may converge to different paths.

Another problem concerns the choice of a consistent termination criterion: the RMS

force usually converges to some finite system-dependent value, which in turn may de-

pend on the number of images and other parameters. A low-energy chain of NEB images

does not necessarily mean that a good pathway has been obtained, since it may arise

because more images are associated with regions around local minima, rather than the

higher energy transition state regions. Here we present the results of DNEB/L-BFGS,

DNEB/SQVV and, where possible, NEB/SQVV calculations for all the distinct per-

mutational rearrangements of the global minimum for the LJ7 cluster (see Figure 2.7

for the endpoints and nomenclature).

It is possible to draw a firm conclusion as to how well the NEB represents the path-

way when the corresponding stationary points and steepest-descent paths are already

known. We therefore base our criterion for the effectiveness of an NEB calculation on

whether we obtain good estimates of all the transition states. By considering several

systems of increasing complexity we hope to obtain comparisons that are not specific

to a particular pathway.

Connections between two minima are defined by calculating an approximation to

the two steepest-descent paths that lead downhill from each transition state, and two

transition states are considered connected if they are linked to the same minimum via
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Figure 2.7: Structures of the most stable isomers for (a) LJ7, (b) LJ38 and (c) LJ75 clusters,

which were used as endpoints in the NEB calculations. The first endpoint was the global

minimum in each case. For LJ38 and LJ75 the second endpoint was chosen to be second-

lowest minimum shown on the right in parts (b) and (c), respectively, while a permutational

isomer of the global minimum was used as the second endpoint in all the LJ7 calculations. The

notation 1–2 denotes an LJ7 rearrangement where the second endpoint is structure (a) with

atoms 1 and 2 swapped. The structures and numbering employed for LJ38 and LJ75 are defined

at http://www-wales.ch.cam.ac.uk/∼sat39/DNEBtests/. Picture of LJ7 was generated using

XMakemol program written by Dr. Matthew Hodges [139]. Structures of LJ38 and LJ75 clusters

were visualised using a Mathematica [140] notebook for making and manipulating triangulated

polyhedra written by Dr. David Wales [141].
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a steepest-descent path. We will say that minima are ‘connected’ if there exists a

path consisting of one or more transition states and intermediate minima linking them.

Permutational isomers of the same minimum are distinguished in these calculations.

We refer to the chain of images produced by the NEB calculation as ‘connected’ if

going downhill from each transition state using steepest-descent minimisation yields a

set of minima that contains the endpoints linked together.

For NEB/SQVV calculations we used the NEB formulation defined in Reference [28].

DNEB is different from the above method because it includes an additional component

in the NEB gradient, as described by Equation 2.39 and Equation 2.40. In addition,

for the following DNEB calculations we did not remove overall rotation and translation

(ORT), because we believe it is unnecessary when our gradient modification is used.

To converge transition state candidates tightly we employed EF optimisation, limiting

the maximum number of EF iterations to five with an RMS force convergence tolerance

of 10−5. (Standard reduced units for the Lennard-Jones potential are used throughout

this work.) Initial guesses for all the following calculations were obtained by linear

interpolation between the endpoints. To prevent ‘atom-crashing’ from causing over-

flow in the initial guess we simply perturbed such images slightly using random atomic

displacements of order 10−2 reduced units.

In each case we first minimised the Euclidean distance between the endpoints

with respect to overall rotation and translation using the method described in Ref-

erence [142].∗ SQVV minimisation was performed with a time step of 0.01 and a

maximum step size per degree of freedom of 0.01. This limit on the step size prevents

the band from becoming ‘discontinuous’ initially and plays an important role only dur-

ing the first 100 or so iterations. The limit was necessary because for the cases when

the endpoints are permutational isomers linear interpolation usually yields bands with

large gradients, and it is better to refrain from taking excessive steps at this stage. We

did not try to select low energy initial guesses for each rearrangement individually, since

one of our primary concerns was to automate this process. For the same reason, all the

L-BFGS optimisations were started from guesses preoptimised using SQVV until the

RMS force dropped below 2.0.

∗Structure alignment methods that are based on finding a pseudorotation matrix that satisfies Eckart

axis conditions might equally well be used for this purpose [143–147].
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Table 2.1: The minimal number of images and total number of gradient calls (in parentheses)

are shown for degenerate rearrangements of LJ7. The image range was 2 6 Ni 6 20 and

the iteration range was 1 < ℓ 6 3, 000Ni. Each SQVV calculation was started from the

guess produced using linear interpolation, while guesses for L-BFGS runs were preoptimised

using DNEB/SQVV until the RMS force dropped below 2.0. Every iteration the images that

satisfy Vi > Vi±1 were optimised further using eigenvector-following. The transition state

candidates that converged to a true transition state within five iterations were used to generate

the connected minima using energy minimisation. If this procedure yielded a connected pathway

the calculation was terminated and the rest of the parameter range was not explored. Otherwise,

the number of images was incremented and the procedure repeated. The number of gradient

calls is a product of the number of images and the total number of iterations. For the L-BFGS

calculations the number of iterations includes the SQVV preoptimisation steps (100 on average)

and the actual number of L-BFGS steps. Dashes signify cases where we were unable to obtain

a connected pathway.

Method 1–2 2–3 3–4 4–5

DNEB/L-BFGS 5(1720) 18(30276) 11(2486) 18(8010)

DNEB/SQVV 16(21648) – 10(14310) –

Table 2.1 shows the minimum number of images and gradient calls required to

produce a connected pathway using the DNEB/L-BFGS and DNEB/SQVV methods.

These calculations were run assuming no prior knowledge of the path. Normally there

is no initial information available on the integrated path length or the number of in-

termediate minima between the endpoints, and it takes some experimentation to select

an appropriate number of images. Our strategy is therefore to gradually increase the

number of images to make the problem as computationally inexpensive as possible.

Hence we increment the number of images and maximum number of NEB iterations in

each calculation until a connected path is produced, in the sense defined above. The

permitted image range was 2 6 Ni 6 20 and the maximum number of NEB iterations

ranged from 1 6 l 6 3, 000Ni. We were unable to obtain connected pathways for any

of the four LJ7 rearrangements using the NEB/SQVV approach.

Table 2.2 presents the results of analogous calculations where we keep the number of



2.5. Results 36

22

22

4

4

6

6

81

11

3

33 5 7

−15−15

−15−15

−16−16

−16−16

1–2

2–3

3–4
4–5

V/ǫ

V/ǫ

V/ǫ

V/ǫ

s/σs/σ

s/σs/σ

Figure 2.8: The potential energy, V , as a function of the integrated path length, s, for four

degenerate rearrangements of LJ7. These profiles were constructed using energy minimisation

to characterise the paths connected to transition states obtained by EF refinement of candidate

structures obtained from DNEB calculations [19].

images fixed to 50. Unlike the performance comparison where the number of images is

kept to a minimum (Table 2.1), these results should provide insight into the performance

of the DNEB approach when there are sufficient images to resolve all the transition

states. All the optimisations for a particular rearrangement converged to the same or

an enantiomeric pathway unless stated otherwise. The energy profiles that correspond

to these rearrangements are shown in Figure 2.8.

From Table 2.1 and Table 2.2 we conclude that in all cases the DNEB/L-BFGS

approach is more than an order of magnitude faster than DNEB/SQVV. It is also

noteworthy that the DNEB/SQVV approach is faster than NEB/SQVV because overall

rotation and translation are not removed. Allowing the images to rotate or translate

freely can lead to numerical problems, namely a vanishing norm for the tangent vector,
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Table 2.2: The minimal number of iterations needed to produce connected pathways for four

degenerate rearrangements of LJ7 using a 50-image NEB. The strategy of this calculation is

identical to the one described in the caption to Table 2.1, except that the number of images

was fixed.

Method 1–2 2–3 3–4 4–5

DNEB/L-BFGS 131a 493 171 326

DNEB/SQVV 1130 15178 2777 23405b

NEB/SQVV 11088b – 30627 –

a The number of iterations is the sum of the SQVV preoptimisation steps (100 on average)

and the actual number of iterations needed by L-BFGS minimiser. b This value is not directly

comparable since DNEB converged to a different path that contains more intermediate minima.

Dashes signify cases where we were unable to obtain a connected pathway.

when the image density is very large or the spring force constant is too small. However,

when overall rotation and translation are not allowed there is less scope for improving

a bad initial guess, because the images are more constrained. This constraint usually

means that more images are needed or a better initial guess is required. Our experience

is that such constraints usually slow down convergence, depending on which degrees of

freedom are frozen: if these are active degrees of freedom (see above) the whole cluster

must move instead, which is usually a slow, concerted multi-step process.

2.5.6 A Revised Connection Algorithm

In previous work we have used the NEB approach to supply transition state guesses

for further EF refinement [8, 133]. Double-ended searches are needed in these discrete

path sampling runs to produce alternative minimum–transition state–minimum · · · se-

quences from an initial path. The end minima that must be linked in such calculations

may be separated by relatively large distances, and a detailed algorithm was described

for building up a connected path using successive transition state searches. The perfor-

mance of the DNEB/L-BFGS approach is sufficiently good that we have changed this

connection strategy in our OPTIM program. In particular, the DNEB/L-BFGS method

can often provide good candidates for more than one transition state at a time, and
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may even produce all the necessary transition states on a long path. However, it is still

generally necessary to consider multiple searches between different minima in order to

connect a pair of endpoints. In particular, we would like to use the minimum number

of NEB images possible for reasons of efficiency, but automate the procedure so that

it eventually succeeds or gives up after an appropriate effort for any pair of minima

that may arise in a discrete path sampling run. These calculations may involve the

construction of many thousands of discrete paths. As in previous work we converge the

NEB transition state candidates using eigenvector-following techniques and then use

L-BFGS energy minimisation to calculate approximate steepest-descent paths. These

paths usually lead to local minima, which we also converge tightly. The combination of

NEB and hybrid eigenvector-following techniques [22, 23] is similar to using NEB with

a ‘climbing image’ as described in Reference [29].

The initial parameters assigned to each DNEB run are the number of images and the

number of iterations, which we specify by image and iteration densities. The iteration

density is the maximum number of iterations per image, while the image density is the

maximum number of images per unit distance. The distance in question is the Euclidean

separation of the endpoints, which provides a crude estimation of the integrated path

length. This approach is based on the idea that knowing the integrated path length,

which means knowing the answer before we start, we could have initiated each DNEB

run with the same number of images per unit of distance along the path. In general it

is also impossible to provide a lower bound on the number of images necessary to fully

resolve the path, since this would require prior knowledge of the number of intervening

stationary points. Our experience suggests that a good strategy is to employ as small

an image and iteration density as possible at the start of a run, and only increase these

parameters for connections that fail.

All NEB images, i, for which Vi > Vi±1 are considered for further EF refinement.

The resulting distinct transition states are stored in a database and the corresponding

energy minimised paths were used to identify the minima that they connect. New

minima are also stored in a database, while for known minima new connections are

recorded. Consecutive DNEB runs aim to build up a connected path by progressively

filling in connections between the endpoints or intermediate minima to which they are
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connected. This is an advantageous strategy because the linear interpolation guesses

usually become better as the separation decreases, and therefore fewer optimisation

steps are required. Working with sections of a long path one at a time is beneficial

because it allows the algorithm to increase the resolution only where it is needed.

Our experience is that this approach is generally significantly faster than trying to

characterise the whole of a complex path with a single chain of images.

When an overall path is built up using successive DNEB searches we must select

the two endpoints for each new search from the database of known minima. It is

possible to base this choice on the order in which the transition states were found,

which is basically the strategy used in our previous work [8, 133]. We have found

that this approach is not flexible or general enough to overcome difficulties that arise

in situations when irrelevant transition states are present in the database. A better

strategy is to connect minima based upon their Euclidean separation. For this purpose

it is convenient to classify all the minima into those already connected to the starting

endpoint (the S set), the final endpoint (the F set), and the remaining minima, which

are not connected to either endpoint (the U set). The endpoints for the next DNEB

search are then chosen as the two that are separated by the shortest distance, where

one belongs to S or F, and the other belongs to a different set. The distance between

these endpoints is then minimised with respect to overall rotation and translation, and

an initial guess for the image positions is obtained using linear interpolation. Further

details of the implementation of this algorithm and the OPTIM program are available

online [138].

2.5.7 Applications to Isomerisation of LJ38 and LJ75

As test cases for this algorithm we have considered various degenerate rearrangements of

LJ7, LJ13, LJ38 and LJ75. (A degenerate rearrangement is one that links permutational

isomers of the same structure [9, 148].) In addition, we have considered rearrangements

that link second lowest-energy structure with a global minimum for LJ38 and LJ75

clusters. The PES’s of LJ38 and LJ75 have been analysed in a number of previous

studies [113, 149–151], and are known to exhibit a double-funnel morphology: for both

clusters the two lowest-energy minima are structurally distinct and well separated in
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Figure 2.9: The potential energy, V , as a function of integrated path length, s, for pathways

linking the two lowest minima of LJ38 and LJ75. Calculations were initiated between two

different sets of permutational isomers of these minima. For each profile the number of transition

states, Nt, number of DNEB runs, Nd, and the total number of gradient calls, Ng, are shown.

Maximum values of Ñ , β and π are marked next to the corresponding transition states. The

endpoints were illustrated in Figure 2.7.

configuration space. This makes them useful benchmarks for the above connection

algorithm. Figure 2.9 depicts the energy profiles obtained using the revised connection

algorithm for rearrangements between the two lowest minima of each cluster. In each

case we have considered two distinct paths that link different permutational isomers of

the minima in question, and these were chosen to be the permutations that give the

shortest Euclidean distances. These paths will be identified using the distance between

the two endpoints; for example, in the case of LJ38 we have paths LJ38 3.274σ and

LJ38 3.956σ, where 21/6 σ is the pair equilibrium separation for the LJ potential.

For each calculation we used the following settings: the initial image density was
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set to 10, the iteration density to 30, and the maximum number of attempts to connect

any pair of minima was limited to three. If a connection failed for a particular pair of

minima then up to two more attempts were allowed before moving to the pair with the

next smallest separation. For the second and third attempts the number of images was

increased by 50% each time. The maximum number of EF optimisation steps was set

to 30 with an RMS force convergence criterion of 10−5. In Figure 2.9 every panel is

labelled with the separation between the endpoints, the number of transition states in

the final pathway, the number of DNEB runs required, and the total number of gradient

calls.

Individual pathways involving a single transition state have been characterised using

indices [152] such as

Ñ =

(∑
t |Xt(S) − Xt(F )|2

)2

∑
t |Xt(S) −Xt(F )|4

, (2.41)

which is a measure of the number of atoms that participate in the rearrangement.∗

Here Xt(S) and Xt(F ) are the position vectors of atom t in the starting and finish-

ing geometries, respectively. The largest values are marked in Figure 2.9 next to the

corresponding transition state. It is noteworthy that the pathways LJ38 3.956σ and

LJ75 4.071σ both involve some highly cooperative steps, and the average value of Ñ is

more than 12 for both of them.

We have found that it is usually easier to locate good transition state candidates for

a multi-step path if the stationary points are separated by roughly equal distances, in

terms of the integrated path length. Furthermore, it seems that more effort is needed

to characterise a multi-step path when transition states involving very different path

lengths are present. In such cases it is particularly beneficial to build up a complete

path in stages. To further characterise this effect we introduce a path length asymmetry

index π defined as

π =
|s+ − s−|

s+ + s−
, (2.42)

where s+ and s− are the two integrated path lengths corresponding to the two downhill

steepest-descent paths from a given transition state. For example, in rearrangement

LJ38 3.956σ, five steps out of nine have π > 0.5.

∗A modification of this Stillinger and Weber’s participation index as well as a new cooperativity

index will be presented in Chapter 3.



2.5. Results 42

Barrier asymmetry also plays a role in the accuracy of the tangent estimate, the

image density required to resolve particular regions of the path, and in our selection

process for transition state candidates, which is based on the condition Vi > Vi±1.
† To

characterise this property we define a barrier asymmetry index, β, as

β =
|E+ − E−|

max (E+, E−)
, (2.43)

where E+ and E− are the barriers corresponding to the forward and reverse reactions,

respectively. The test cases in Figure 2.9 include a variety of situations, with barrier

asymmetry index β ranging from 0.004 to 1.000. The maximum values of π and β are

shown next to the corresponding transition states in this figure.

We note that the total number of gradient evaluations required to produce the

above paths could be reduced significantly by optimising the DNEB parameters or the

connection strategy in each case. However, our objective was to find parameters that

give reasonable results for a range of test cases, without further intervention.

2.5.8 A Dijkstra-based Selector

An essential part of the connection algorithm is a mechanism to incorporate the in-

formation obtained in all the previous searches into the next one. For large endpoint

separations guessing the initial pathway can be difficult, and there is a large probability

of finding many irrelevant stationary points at the beginning of the calculation.

The connection algorithm described earlier uses one double-ended search per cycle.

However, we have found that this approach can be overwhelmed by the abundance of

stationary points and pathways for complicated rearrangements. We therefore intro-

duce the idea of an unconnected pathway and make the connection algorithm more

focused by allowing more than one double-ended search per cycle.

Before each cycle a decision must be made as to which minima to try and connect

next. Various strategies can be adopted, for example, selection based on the order

in which transition states were found [8], or, selection of minima with the minimal

separation in Euclidean distance space [7]. However, when the endpoints are very

distant in configuration space, neither of these approaches is particularly efficient. The

†Unless there is no maximum in the profile, in which case we consider for transition state searching

the highest energy image.
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number of possible connections that might be tried simply grows too quickly if the S,

F and U sets become large. However, the new algorithm described below seems to be

very effective.

The modified connection algorithm we have used in the present work is based on

a shortest path method proposed by Dijkstra [153, 154]. We can describe the minima

that are known at the beginning of each connection cycle as a complete graph [155],

G = (M,E), where M is the set of all minima and E is the set of all the edges between

them. Edges are considered to exist between every pair of minima u and v, even if they

are in different S, F or U sets, and the weight of the edge is chosen to be a function of

the minimum Euclidean distance between them [142]:

w(u, v) =





0, if u and v are connected via a single transition state,

∞, if n(u, v) = nmax,

f(D(u, v)), otherwise,

(2.44)

where n(u, v) is the number of times a pair (u, v) was selected for a connection attempt,

nmax is the maximal number of times we may try to connect any pair of minima, and

D(u, v) is the minimum Euclidean distance between u and v. f should be a monoton-

ically increasing function, such as f(D(u, v)) = D(u, v)2. We denote the number of

minima in the set M = S ∪ U ∪ F , as m, and the number of edges in the set E as

e = m(m − 1)/2.

Using the Dijkstra algorithm [153, 154] and the weighted graph representation de-

scribed above, it is possible to determine the shortest paths between any minima in

the database. The source is selected to be one of the endpoints. Upon termination of

the Dijkstra algorithm, a shortest path from one endpoint to the other is extracted.

If the weight of this pathway is non-zero, it contains one or more ‘gaps’. Connection

attempts are then made for every pair (u, v) of adjacent minima in the pathway with

non-zero w(u, v) using the DNEB approach [7].

The computational complexity of the Dijkstra algorithm is at worst O(m2), and the

memory requirements scale in a similar fashion. The most appropriate data structure

is a weighted adjacency matrix. For the calculations presented here, the single source

shortest paths problem was solved at the beginning of each cycle, which took less than
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10% of the total execution time for the largest database encountered. We emphasise

here that once an initial path has been found, the perturbations considered in typical

discrete path sampling (DPS) calculations will generally involve attempts to connect

minima that are separated by far fewer elementary rearrangements than the endpoints.

It is also noteworthy that the initial path is unlikely to contribute significantly to the

overall rate constant. Nevertheless, it is essential to construct such a path to begin the

DPS procedure.

The nature of the definition of the weight function allows the Dijkstra algorithm to

terminate whenever a second endpoint, or any minimum connected to that endpoint

via a series of elementary rearrangements, is reached. This observation reduces the

computational requirements by an amount that depends on the distribution of the

minima in the database among the S, U and F sets. One of the endpoints is always a

member of the S set, while the other is a member of F set. Either one can be chosen

as the source, and we have found it most efficient to select the one from the set with

fewest members. However, this choice does not improve the asymptotic bounds of the

algorithm.

2.5.9 Applications to Tryptophan Zippers

Tryptophan zippers are stable fast-folding β-hairpins designed by Cochran et al. [156],

which have recently generated considerable interest [157, 158]. In the present work we

have obtained native to denatured state rearrangement pathways for five tryptophan

zippers: trpzip 1, trpzip 2, trpzip 3, trpzip 3-I and trpzip 4. The notation is adopted

from the work of Du et al. [158]. All these peptides contain twelve residues, except

for trpzip 4, which has sixteen. Tryptophan zippers 1, 2, 3 and 3-I differ only in

the sequence of the turn. Experimental measurements of characteristic folding times

for these peptides have shed some light on the significance of the turn sequence in

determining the stability and folding kinetics of peptides with the β-hairpin structural

motif [158].

To model these molecules we used a modified CHARMM19 force field [4], with

symmetrised Asn, Gln and Tyr dihedral angle and Cter improper dihedral angle terms,

to ensure that rotamers of these residues have the same energies and geometries. These
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changes to the standard CHARMM19 force field are described in detail in Appendix A.

Another small modification concerned the addition of a non-standard amino acid, D-

proline, which was needed to model trpzip 3. The implicit solvent model EEF1 was

used to account for solvation [11], with a small change to the original implementation

to eliminate discontinuities [159].

We have used the Dijkstra-based connection algorithm to obtain folding pathways

for all five trpzip peptides. In each case the first endpoint was chosen to be the na-

tive state structure, which, for 1, 2 and 4 trpzips, was taken from the Protein Data

Bank (PDB) [160]. There are no NMR structures available for 3 and 3-I, so for these

peptides the first endpoint was chosen to be the putative global minimum obtained

using the basin-hopping method [161–163]. The folded state for trpzip 2 is depicted in

Figure 2.10. The total charge of this molecule is 2e (two Lys)−e (Glu)= e. However,

in our calculations the total charge was zero because in the CHARMM19 force field

ionic sidechains and termini are neutral when the EEF1 solvation model is used [11].

The second endpoint was chosen to be an extended structure, which was obtained by

simply minimising the energy of a conformation with all the backbone dihedral an-

gles set to 180 degrees. All the stationary points (including these obtained during the

connection procedure) were tightly converged to reduce the root-mean-squared force

below 10−10 kcal mol−1 Å−1. The unfolded state for trpzip 2 is depicted in Figure 2.11

for example.

Each of the five trpzip pathway searches was conducted on a single Pentium 4

3.0 GHz 512 Mb cache CPU and required less than 24 hours of CPU time. The timings

could certainly be improved by optimising the various parameters employed throughout

the searches. However, it is more important that the connections actually succeed in a

reasonably short time. It only requires one complete path to seed a DPS run, and we

expect the DPS procedure to reduce the length of the initial path by a least a factor

of two in sampling the largest contributions to the effective two-state rate constants.

The results of all the trpzip calculations are shown in Figure 2.12.
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Figure 2.10: The folded state of tryptophan zipper 2 (shown in stereo). This structure con-

tains 12 residues and two terminal capping groups, containing a total of 148 CHARMM19

atoms. The sequence of residues is Ace–Ser–Trp–Thr–Trp–Glu–Asn–Gly–Lys–Trp–Thr–Trp–

Lys–Cbx. The naming convention for amino acid residues is the same as in Reference [164]. N-

and C-termini are capped with the standard CHARMM19 blocking groups, ‘Ace’ (–CO–CH3)

and ‘Cbx’ (–NH–CH3), respectively. The structure was obtained by minimising the first out

of 20 structures deposited in the Protein Data Bank (PDB ID: 1LE1) by Cochran, Skel-

ton, and Starovasnik [156]. The RMS force and modified [165] CHARMM19 energy are

< 10−10 kcalmol−1 Å−1 and −358.3130612 kcalmol−1, respectively. The structural motif of

this de novo peptide is a β-hairpin. It can be seen that the backbone is stabilised by a U-turn

and six hydrogen bonds while four hydrophobic tryptophan sidechains are packed nicely on the

side. Red, blue and light grey balls denote oxygen, nitrogen and hydrogen atoms, respectively.

Dark grey balls denote carbon atoms as well as CHARMM19 united atoms of types CH, CH2

and CH3. Ace and Cbx each contain a single united atom of type CH3. There is one CH2

‘atom’ in each of the four tryptophans (connecting the 5-membered ring of the sidechain with

the backbone). This figure was prepared using MolMol [166].

2.6 Summary

One of the two most important results of this chapter is probably the doubly nudged

elastic band formulation, in which a portion of the spring gradient perpendicular to

the path is retained. With this modification we found that L-BFGS minimisation

of the images is stable, thus providing a significant improvement in efficiency. Con-
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Figure 2.11: The unfolded state of tryptophan zipper 2 (shown in stereo). This structure

was obtained by minimising a conformation with all the backbone dihedral angles set to 180

degrees. The energy of this structure is −323.0716439 kcalmol−1. The RMS deviation from the

minimised PDB structure depicted in Figure 2.10 is 122.70 Å. See the caption of Figure 2.10

for notation and other details.
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Figure 2.12: Energy profiles for native to denatured state rearrangements of tryptophan

zippers found by the Dijkstra-based connection algorithm. For each profile the number of steps

in the pathway, the number of connection algorithm cycles, the total number of DNEB searches

and the total number of stationary points in the database (recorded upon termination of the

algorithm) are shown. The total number of stationary points is presented in the form n, m,

where n is the number of minima and m is the number of transition states. The potential

energy, V , is given in the units of kcal/mol, and the integrated path length, s, is given in the

units of Å.
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straints such as elimination of overall rotation and translation are not required, and

the DNEB/L-BFGS method has proved to be reliable for relatively complicated coop-

erative rearrangements in a number of clusters.

In comparing the performance of the L-BFGS and quenched velocity Verlet (QVV)

methods for optimising chains of images we have also investigated a number of alter-

native QVV schemes. We found that the best approach is to quench the velocity after

the coordinate update, so that the velocity response to the new gradient lags one step

behind the coordinate updates. However, this slow-response QVV (SQVV) method

does not appear to be competitive with L-BFGS.

We have revised our previous scheme [8] for constructing connections between dis-

tant minima using multiple transition state searches. Previously we have used an

NEB/L-BFGS framework for this purpose, with eigenvector-following refinement of

transition state candidates and characterisation of the connected minima using energy

minimised approximations to the steepest-descent paths [8, 133]. When the DNEB/L-

BFGS approach is used we have found that it is better to spend more effort in the

DNEB phase of the calculation, since a number of good transition state guesses can

often be obtained even when the number of images is relatively small. In favourable

cases a complete path linking the required endpoints may be obtained in one cycle.

Of course, this was always the objective of the NEB approach [27–30], but we have

not been able to achieve such results reliably for complex paths without the current

modifications.

When a number of transition states are involved we still find it more efficient to

build up the overall path in stages, choosing endpoints that become progressively closer

in space. This procedure has been entirely automated within the OPTIM program, which

can routinely locate complete paths for highly cooperative multi-step rearrangements,

such as those connecting different morphologies of the LJ38 and LJ75 clusters.

For complex rearrangements the number of elementary steps involved may be rather

large, and new methods for constructing an initial path are needed. This path does

not need to be the shortest, or the fastest, but it does need to be fully connected. The

second most important result of this chapter is probably a connection procedure based

upon Dijkstra’s shortest path algorithm, which enables us to select the most promising
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paths that include missing connections for subsequent double-ended searches. We have

found that this approach enables initial paths containing more than a hundred steps

to be calculated automatically for a variety of systems. Results have been presented

for trpzip peptides here and for buckminsterfullerene, the GB1 hairpin and the villin

headpiece subdomain elsewhere [167]. These paths will be employed to seed future

discrete path sampling calculations. This approach greatly reduces the computational

demands of the method, and has allowed us to tackle more complicated problems. The

new algorithm has also been implemented within our OPTIM program, and a public

domain version is available for download from the Internet [138].


