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Abstract
A modification of the nudged elastic band (NEB) method is presented that enables

stable optimisations to be run using both the limited-memory quasi-Newton (L-BFGS)

and slow-response quenched velocity Verlet minimisers. The performance of this new

‘doubly nudged’ DNEB method is analysed in conjunction with both minimisers and

compared with previous NEB formulations. We find that the fastest DNEB approach

(DNEB/L-BFGS) can be quicker by up to two orders of magnitude. Applications

to permutational rearrangements of the seven-atom Lennard-Jones cluster (LJ7) and

highly cooperative rearrangements of LJ38 and LJ75 are presented.

Secondly, we propose new measures of localisation and cooperativity for the analysis

of atomic rearrangements. We show that for both clusters and bulk material coopera-

tive rearrangements usually have significantly lower barriers than uncooperative ones,

irrespective of the degree of localisation. We also find that previous methods used to

sample stationary points are biased towards rearrangements of particular types. Linear

interpolation between local minima in double-ended transition state searches tends to

produce cooperative rearrangements, while random perturbations of all the coordinates,

as sometimes used in single-ended searches, has the opposite effect.

Thirdly, we report a new algorithm for constructing pathways between local minima

that involve a large number of intervening transition states on the PES. A significant

improvement in efficiency has been achieved by changing the strategy for choosing

successive pairs of local minima that serve as endpoints for the next search. We employ

Dijkstra’s algorithm to identify the ‘shortest’ path corresponding to missing connections

within an evolving database of local minima and the transition states that connect them.

Finally, we describe an exact approach for calculating the total transition proba-

bilities in finite-state discrete-time Markov processes. All the states and the rules for

transitions between them must be known in advance. We can then calculate averages

over a given ensemble of paths for both additive and multiplicative properties in a

non-stochastic and non-iterative fashion. In particular, we can calculate the mean first

passage time between arbitrary groups of stationary points for discrete path sampling

databases, and hence extract phenomenological rate constants. We present a number

of examples to demonstrate the efficiency and robustness of this approach.
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Chapter 1

Introduction

The Dark Side of the Force is a pathway to

many abilities some consider to be unnatural.

George Lucas, Revenge of the Sith

Knowledge of the potential energy surface∗ (PES) and the ability to use this knowledge

grant extraordinary powers of prediction about the structure, dynamics and thermo-

dynamics of any molecular system [9]. A potential, also known as a force field, is used

to formally specify the PES in theoretical studies.

1.1 The Force Field

A general force field can be written as a series of terms representing the interactions

between increasingly large sets of atoms [34, 35]:

V = ǫ(0) +

N∑

α

ǫ(1)
α +

N∑

α

N∑

β<α

ǫ
(2)
α,β +

N∑

α

N∑

β<α

N∑

γ<β

ǫ
(3)
α,β,γ + · · · , (1.1)

where N is the total number of atoms, and the two-body term ǫ
(2)
α,β, for instance,

describes the interaction of two atoms α and β.

Three-body and higher order terms in Equation 1.1 are often neglected, such as, for

∗In this thesis terms ‘potential energy landscape’ and PES are used synonymously. At the time of

writing searching for “potential energy surface” and “potential energy landscape” in GoogleR© yielded

259,000 and 17,800 hits, respectively.

1



1.2. Creating a Coarse-grained Model 2

example, in the Lennard-Jones (LJ) pair potential [9, 36], which takes the form

V = 4ǫ
N∑

β<α

[(
σ

rα,β

)12

−
(

σ

rα,β

)6
]

, (1.2)

where rα,β is the distance between atoms α and β, ǫ is the depth of the potential energy

well, and 21/6σ is the pair equilibrium separation. This is an approximate potential

as its form is a trade-off between the accurate reproduction of the interaction between

closed-shell atoms and mathematical and computational simplicity. In this thesis we

will use it to describe atomic clusters of various sizes.

1.2 Creating a Coarse-grained Model

It is often possible to gain new insight into the properties of a molecular system by

expressing them in terms of stationary points of the PES, i.e. points where the gradient

of the potential vanishes [9, 37]. Such a coarse-grained picture may be appropriate if

the system spends most of its time in the vicinity of these points and the properties

of interest can be expressed in terms of the properties of these points only. In realistic

applications it may also be the only way forward, as the corresponding PES’s are usually

complex.

The most important stationary points are minima and the transition states that

connect them. Here we define a minimum as a stationary point where the Hessian,

the second derivative matrix, has no negative eigenvalues, while a transition state is a

stationary point with precisely one such eigenvalue [38].

The number of stationary points on the PES generally scales exponentially with

system size [39–43], which necessitates an appropriate sampling strategy of some sort

for larger systems. In particular, to analyse kinetic properties a representative sample

is usually obtained, which generally involves extensive use of single-ended and double-

ended transition state searching techniques [7, 9, 30].

Locating transition states on a PES also provides an important tool in the study of

dynamics using statistical rate theories [44–48]. Unfortunately, it is significantly harder

to locate transition states than local minima, since the system must effectively ‘balance

on a knife-edge’ in one degree of freedom. Many algorithms have been suggested for this

purpose, and the most efficient method may depend upon the nature of the system. For
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example, different considerations probably apply if second derivatives can be calculated

relatively quickly, as for many empirical potentials [9]. Transformation to an alternative

coordinate system may also be beneficial for systems bound by strongly directional

forces [49–57].

Single-ended transition state searches [12–23, 54, 58–86] only require an initial start-

ing geometry. The result of a single-ended search may be a transition state that is not

connected to the starting point by a steepest-descent path, and such methods can be

useful for building up databases of stationary points to provide a non-local picture of

the potential energy surface, including thermodynamic and dynamic properties [9, 86].

However, double-ended searches [27–29, 53, 87–107] require two endpoint geometries, a

mechanism to generate a set of configurations between them, and a suitable functional

(or gradient) to be evaluated and minimised. The most successful single- and double-

ended methods currently appear to be based upon hybrid eigenvector-following [12–24]

and the nudged elastic band approach [7, 27, 29, 30, 108–110], respectively. The two

search types are often used together, since double-ended transition state searches do not

produce a tightly converged transition state and further refinement may be needed [7, 9].

1.3 Working with a Coarse-grained Model

In Chapter 2 and Chapter 4 of this thesis coarse-grained models of a PES are discussed

in graph-theoretical terms. Nowadays a flourishing branch of mathematics and com-

puter science, graph theory arguably started in the year of 1736 with Leonhard Euler’s

paper on the seven bridges of Königsberg, where he abstracted from landmasses and

bridges to highlight the connectivity, and proved that it is impossible to cross every

bridge exactly once in a single walk that starts and ends at the same point.

A graph∗ is defined as a set of nodes with connections between them called edges [111].

A coarse-grained picture of a PES therefore naturally fits into this definition, with nodes

representing minima and edges representing the transition states that connect them.

This approach was adopted in a number of previous energy landscapes studies, ex-

amples being the characterisation of dynamics in a region of a PES [8, 112–114] and

detailed topological analyses of semi-complete PES samples [115].

∗In modern literature the term ‘network’ is often used synonymously with the term ‘graph’.
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A directed edge is defined by its origin and destination nodes and can be travelled

in one direction only. A graph composed of directed edges is termed a directed graph

(digraph). Although every transition state facilitates both forward and reverse reac-

tions, these are usually inequivalent, which leads to a symmetric digraph representation

of a PES, i.e. to a digraph that is composed of pairs of complementary edges that share

the same endpoints. Studies aimed at elucidating the global topology of a PES usually

do not make such a distinction and deal with undirected graphs.

Interesting properties of the PES’s of small Lennard-Jones clusters were recently

discovered by Doye and Massen in a study of the corresponding undirected graph

representations [115]. It appears that such graphs have features similar to both small-

world and scale-free graphs. (A graph is said to have a small-world property if most

pairs of nodes are connected by relatively short paths [111, 116, 117]. Such a graph

can be easily obtained via a random rewiring of regular grid or lattice. The degree of a

node is defined as the total number of its neighbours, and a graph is termed scale-free

if its distribution of degrees follows a power law [111, 116].) While scale-free graphs are

usually obtained via preferential attachment during growth [118], the origin of scale-free

topology in graphs corresponding to PES’s may lie in an Apollonian-like [119] packing

of the basins of attraction [115]. Following the ‘inherent structure’ PES partitioning

due to Stillinger and Weber [41, 42], a basin of attraction of a minimum can be defined

as a set of points in configuration space connected to that minimum via steepest-descent

paths. Topological studies of PES’s are important because they can provide further

insights into the PES connectivity and, consequently, increase our understanding of the

relationship between the structural organisation of the PES and the observed physical

and chemical properties.

Describing physical phenomena such as, for example, Brownian motion [120] and

diffusion [121], requires more sophisticated graph models that allow for different types

of edges. In edge-weighted graphs a label (weight or cost) is associated with every edge.

Such graphs will be used in this thesis for various purposes. For example, an important

part of the path-finding method described in Chapter 2 is the undirected edge-weighted

graph representation, where every node is connected to every other node via an edge

with a weight that is a function of Euclidean distance. In Appendix E we explain how
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a weighted graph approach can be used to identify the fastest reaction pathways.

Both Brownian motion and diffusion were extensively studied in the past with the

help of stochastic processes such as the random walk [121]. In mathematics and physics,

a random walk is a formalisation of the intuitive idea of taking successive steps, each

in a random direction [33]. If the number of possible directions is predefined and finite,

a random walk is very easy to realize on an edge-weighted graph. A walk on a graph

is defined as a sequence of edges such that the second node of each edge (except for

the last edge) is the first node of the next edge. If the weights of the outgoing edges

for every graph node add up to unity the graph is called probabilistic. A single step of

a random walk confined to a probabilistic graph constitutes choosing the next graph

node from the neighbours of the current node with a probability that equals the weight

of the corresponding edge.

In Chapter 4 we will use random walks to model unimolecular chemical reac-

tions [122]. An elementary reaction pathway is described as a transition from one

state to a neighbouring state via a single transition state. Valid predictions of the

sequence of such steps, known as the reaction mechanism, and a time scale associated

with it are the holy grails of modern theoretical chemistry. Node-weighted probabilistic

graphs are needed to address the time scale issue, because the time spent by a system

before the transition occurs is likely to vary from state to state. An alternative descrip-

tion based on a probabilistic graph where each node is allowed to have a connection to

itself is a more general approach to achieve this objective [123]. Both these models are

employed in Chapter 4 in calculations of the average time for the reaction known as

the mean first passage time.

The aforementioned graph model with self-connections is known by scientists in

the fields of probability and stochastic processes as a discrete-time Markov chain — a

stochastic process with a discrete state space [123]. The question of the first moment

of the distribution of first passage times in stochastic processes is one of the most basic

ones and is over two hundred years old. The first mean first passage time calculation was

probably done by Jacob Bernoulli in the beginning of eighteenth century. In his ground-

breaking work on probability titled ‘The art of conjecture’, which was posthumously

published by his nephew Nicholas Bernoulli in 1713, he describes the techniques for
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calculating the duration of various games of chance [124]. A number of methods for

efficient calculation of the mean first passage times was developed since then, some of

which are yet to be fully utilised in chemical applications.

In this thesis I will attempt to address two important stages in an energy-landscapes-

based approach to the analysis of chemical reactivity, namely, finding reaction (or

rearrangement) pathways and extracting the kinetic information from the obtained

pathway ensemble. As the meaning of the term pathway (or path) varies from chapter

to chapter I will spend some time in the introductory sections clarifying the terminology.

1.4 Thesis Overview

The results of the work that I have carried out are presented in three chapters.

The main focus of Chapter 2 is on double-ended methods for finding transition

states. A detailed review of one of the leading methods from that class is followed

by the discussion of our modifications and improvements that allowed us to extend its

applicability. Results for a model two-dimensional surface and Lennard-Jones clusters

of several sizes are presented. The chapter culminates with an application to finding

folding paths for a family of small peptides known as tryptophan zippers.

Chapter 3 is devoted to discussion of two exciting properties of rearrangement

pathways — cooperativity and localisation. A new measure of cooperativity suitable for

applications to atomic rearrangements is introduced and subsequently used to establish

the links between cooperativity of a single-step rearrangement, the energy barrier height

and the difficulty of locating the corresponding transition state with both single-ended

and double-ended methods.

In Chapter 4 we deal with compact representations of large pathway ensembles

borrowing ideas from graph theory and the theory of random processes. The main

theme is the development of faster methods for calculation of mean escape times for

graphs of increasing complexity. We devise a number of approaches for extracting this

kinetic information and compare them to well-established techniques such as kinetic

Monte Carlo and discrete path sampling.

Chapter 5 summarises the achievements of the work described in this thesis and

suggests the directions for future research.



Chapter 2

Finding Rearrangement

Pathways

Remember when life’s path is steep

to keep your mind even.

Horace (65 BC - 8 BC)

2.1 Introduction

Our principal concern in this chapter is the development of the double-ended NEB

approach [27–30]. The earliest double-ended methods were probably the linear and

quadratic synchronous transit algorithms (LST and QST) [125], which are entirely

based on interpolation between the two endpoints. In LST the highest energy structure

is located along the straight line that links the two endpoints. QST is similar in spirit,

but approximates the reaction path using a parabola instead of a straight line. Neither

interpolation is likely to provide a good estimate of the path except for very simple

reactions, but they may nevertheless be useful to generate initial guesses for more

sophisticated double-ended methods.

Another approach is to reduce the distance between reactant and product by some

arbitrary value to generate an ‘intermediate’, and seek the minimum energy of this

intermediate structure subject to certain constraints, such as fixed distance to an end-

point. This is the basis of the ‘Saddle’ optimisation method [126] and the ‘Line Then

7
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Plane’ [127] algorithm, which differ only in the definition of the subspace in which the

intermediate is allowed to move. The latter method optimises the intermediate in the

hyperplane perpendicular to the interpolation line, while ‘Saddle’ uses hyperspheres.

The minimised intermediate then replaces one of the endpoints and the process is re-

peated.

There are also a number of methods that are based on a ‘chain-of-states’ (CS)

approach, where several images of the system are somehow coupled together to create

an approximation to the required path. The CS methods mainly differ in the way

in which the initial guess to the path is refined. In the ‘Chain’ method [128] the

geometry of the highest energy image is relaxed first using only the component of

the gradient perpendicular to the line connecting its two neighbours. The process is

then repeated for the next-highest energy neighbours. The optimisation is terminated

when the gradient becomes tangential to the path. The ‘Locally Updated Planes’

method [129] is similar, but the images are relaxed in the hyperplane perpendicular to

the reaction coordinate, rather than along the line defined by the gradient, and all the

images are moved simultaneously.

The NEB approach introduced some further refinements to these CS methods [30].

It is based on a discretised representation of the path originally proposed by Elber and

Karplus [88], with modifications to eliminate corner-cutting and sliding-down prob-

lems [27], and to improve the stability and convergence properties [29]. Maragakis et

al. applied the NEB method to various physical systems ranging from semiconductor

materials to biologically relevant molecules. They report that use of powerful minimi-

sation methods in conjunction with the NEB approach was unsuccessful [107]. These

problems were attributed to instabilities with respect to the extra parameters intro-

duced by the springs.

The main result of the present contribution is a modified ‘doubly nudged’ elastic

band (DNEB) method, which is stable when combined with the L-BFGS minimiser. In

comparing the DNEB approach with other methods we have also analysed quenched

velocity Verlet minimisation, and determined the best point at which to remove the

kinetic energy. Extensive tests show that the DNEB/L-BFGS combination provides

a significant performance improvement over previous implementations. We therefore
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outline a new strategy to connect distant minima, which is based on successive DNEB

searches to provide transition state candidates for refinement by eigenvector-following.

2.2 A Double-ended Method: Nudged Elastic Band

In the present work we used the nudged elastic band [27, 28] (NEB) and eigenvector-

following [12–19, 22–24] (EF) methods for locating and refining transition states. In the

NEB approach the path is represented as a set of images {X1,X2...XNi
} that connect

the endpoints X0 and XNi+1, where Xi is a vector containing the coordinates of image

i (Figure 2.1) [29]. In the usual framework of double-ended methodologies [130] the

endpoints are stationary points on the PES (usually minima), which are known in

advance. In addition to the true potential, Vi, which binds the atoms within each

image, equivalent atoms in Ni adjacent images are interconnected by Ni + 1 springs

according to a parabolic potential,

Ṽ = 1
2kspr

Ni+1∑

i=1

|Xi −Xi−1|2. (2.1)

Subsequently these potentials will be referred to as the ‘true potential’ and the ‘spring

potential’, respectively.

The springs are intended to hold images on the path during optimisation — oth-

erwise they would slide down to the endpoints, or to other intermediate minima [88].

Occasionally, depending on the quality of the initial guess, we have found that some

images may converge to higher index stationary points. One could imagine the whole

construction as a band or rope that is stretched across the PES, which, if optimised,

is capable of closely following a curve defined in terms of successive minima, transition

states, and the intervening steepest-descent paths.

In practice, the above formulation encounters difficulties connected with the cou-

pling between the ‘true’ and ‘spring’ components of the potential. The magnitude of

the springs’ interference with the true potential is system dependent and generally gives

rise to corner-cutting and sliding-down problems [27]. It is convenient to discuss these

difficulties in terms of the components of the true gradient, g, and spring gradient, g̃,

parallel and perpendicular to the path. The parallel component of the gradient g‖ at

image i on the path is obtained by projecting out the perpendicular component g⊥ us-
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V (X)

x

y

Minima

X0

X9

X23

(a)

(b)

TS

Pathway

V ⊥

Figure 2.1: Graphical representation of the nudged elastic band approach. (a) The optimised

nudged elastic band for a two-dimensional model surface. The band contains 21 images and

connects two minima X0 and X23. Image X9 has the highest energy and might therefore

be used to estimate transition state properties or as a starting guess for further refinement.

(b) ‘Nudging’: the NEB depicted in (a) is projected onto the xy plane and feels only the

perpendicular component of the true gradient from the effective potential V ⊥.
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ing an estimate of the tangent to the path. The parallel and perpendicular components

for image i are:

g
‖
i = (▽iVi, τ̂ i) τ̂ i, g⊥i = ▽iVi − g

‖
i , (2.2)

where Vi = V (Xi), the unit vector τ̂ i is the tangent, and (▽iVi, τ̂ i) denotes the scalar

product of vectors ▽iVi and τ̂ i. Here and throughout this work we denote unit vectors

by a hat. The complete gradient, g, has Ni × η components for a band of Ni images

with η atomic degrees of freedom each.

Corner-cutting has a significant effect when a path experiences high curvature.

Here g̃⊥ is large, which prevents the images from following the path closely because the

spring force necessarily has a significant component perpendicular to the tangent. The

sliding-down problem occurs due to the presence of g‖, which perturbs the distribution

of images along the path, creating high-resolution regions (around the local minima)

and low-resolution regions (near the transition states) [27]. Both problems significantly

affect the ability of the NEB method to produce good transition state candidates. We

have found that sliding-down and corner-cutting are interdependent and cannot both

be remedied by adjusting the spring force constant kspr; increasing kspr may prevent

sliding-down but it will make corner-cutting worse.

The aforementioned problems can sometimes be eliminated by constructing the

NEB gradient from the potential in the following way: g‖ and g̃⊥ are projected out,

which gives the elastic band its ‘nudged’ property [28]. Removal of g‖ can be thought of

as bringing the path into a plane or flattening the PES [Figure 2.1 (b)], while removal

of g̃⊥ is analogous to making the images heavier so that they favour the bottom of the

valley at all times.

The choice of a method to estimate the tangent to the path is important for it

affects the convergence of the NEB calculation. Originally, the tangent vector, τ̂ i, for

image i was obtained by normalising the line segment between the two adjacent images,

i + 1 and i− 1 [27]:

τ̂ i =
Xi+1 −Xi−1

|Xi+1 −Xi−1|
. (2.3)

However, kinks can develop during optimisation of the image chain using this definition

of τ̂ i. It has been shown [29] that kinks are likely to appear in the regions where the

ratio g
‖
i /g
⊥
j is larger than the length of the line segment, |τ |, used in estimating the
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tangent [Figure 2.2 (a)].

Both the above ratio, the image density and |τ̂ | can vary depending on the system

of interest, the particular pathway and other parameters of the NEB calculation. From

Equation 2.3 it can be seen that τ̂ i, and, hence, the next step in the optimisation of

image i, is determined by its neighbours, which are not necessarily closer to the path

than image i. Therefore, a better approach in estimating the τ̂ i would be to use only

one neighbour, since then we only need this neighbour to be better converged than

image i.

There are two neighbours to select from, and it is natural to use the higher-energy

one for this purpose, since steepest-descent paths are easier to follow downhill than

uphill:

τ̂ i =
(j − i) (Xj −Xi)

|Xj −Xi|
, (2.4)

where i and j are two adjacent images with energies Vi and Vj , and Vi < Vj. In this

way, an image i that has one higher-energy neighbour j behaves as if it is ‘hanging’ on

to it [Figure 2.2(b)].

The above tangent formulation requires special handling of extrema along the path,

and a mechanism for switching τ̂ at such points was proposed [29]. It also fails to

produce an even distribution of images in regions with high curvature [Figure 2.2 (c)].

We presume that Henkelman and Jónsson substitute (g̃, τ̂ ) τ̂ by |g̃|τ̂ in Equation 2.2

to obtain a spring gradient formulation that will keep the images equispaced when the

tangent from Equation 2.4 is used in the projections [28]:

g̃
‖
i = kspr

(
|Xi −Xi−1| − |Xi+1 −Xi|

)
τ̂ i. (2.5)

2.3 Optimisation of the Nudged Elastic Band

In the present work the NEB approach has been used in combination with two min-

imisers, namely the quenched velocity Verlet (QVV) and the limited-memory Broyden-

Fletcher-Goldfarb-Shanno (L-BFGS) algorithms. It is noteworthy that the objective

function corresponding to the projected NEB gradient is unknown, but it is not actually

required in either of the minimisation algorithms that we consider.

Optimisation is a general term that refers to finding stationary points of a function.

Many problems in computational chemistry can be formulated as optimisation of a
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τ̂

τ̂

|τ |

F⊥i−1

F⊥i

(a) (b)

(c) (d)

x

y

d

V ⊥

V ⊥

V

i

i

i

i + 1

i + 1

i + 1

i− 1

i− 1

F2

F1

F⊥spr

Figure 2.2: Details of recent NEB implementations. (a) Conditions under which kinks appear

during optimisation of the NEB using the tangent estimated from the line segment τ̂ connecting

images i + 1 and i− 1. Displacement of image i from the path (dash-dotted line) creates forces

F⊥
i−1 = −g⊥

i−1 and F⊥
i = −g⊥

i . While F⊥
i is a restoring force that originates from V ⊥, F⊥

i−1

is destabilising and originates from V ‖ (and is non-zero due to the fact that the tangent at

image i− 1 has changed after displacement of image i). For the case of small displacements the

potential may be resolved into two contributions, V ⊥ = k⊥x2/2 and V ‖ = −k‖y, and kinks will

not appear if k‖/k⊥ < |τ̂ |. (b) Tangent estimate using the higher energy neighbour: image i+1

is ‘hanging’ on to image i. The separation d is controlled by the lower-lying images (> i + 1)

but not V . (c) An NEB that follows the curved region of the path: since the spring force F1

acting on image i is compensated by projection F2, the distribution of images becomes uneven.

(d) Corner-cutting displayed on a cross-section of the curved part of the path depicted in (c):

the image is displaced from the path due to the presence of F⊥
spr .
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multidimensional function, NEB optimisation being one of the many. The goal of an

optimisation problem can be formulated as follows: find a combination of parameters

(independent variables) that optimise a given quantity (the objective function), possibly

with some restrictions on the allowed parameter ranges [131]. To know exactly what

we are looking for optimality conditions need to be defined. The condition

f(x∗) < f(y) ∀y ∈ ℧ (x) ,y 6= x∗, (2.6)

where ℧ (x) is the set of all possible values of the control variable x = (x1, x2, ...xn)T ,

defines the global optimum x∗ of the function f(x). For an unconstrained problem ℧ (x)

is infinitely large, and finding the corresponding global minimum may be a difficult task.

Similarly, a point x∗ is a strong local minimum of f(x) if

f(x∗) < f(y) ∀y ∈ Υ (x∗, ε) ,y 6= x∗, (2.7)

where Υ (x∗, ε) is a set of feasible points contained in the neighbourhood ε of x∗. For a

weak local minimum only an inequality f(x∗) 6 f(y) must be satisfied in Equation 2.7.

More easily identified optimality conditions could be used instead of Equation 2.6

and Equation 2.7 if f(x) is a function with continuous first and second derivatives,

namely, the stationary point and the strong local minimum conditions. A stationary

point is a point where the gradient vanishes:

gi (x) =
∂f(x)

∂xi
= 0, (2.8)

and a strong local minimum is a stationary point where the Hessian matrix

[H (x)]ij =
∂2f (x)

∂xi∂xj
(2.9)

is positive-definite:

zTH (x) z > 0 ∀z 6= 0. (2.10)

Formally, optimisation of an NEB qualifies as a nonlinear unconstrained continuous

multivariable optimisation problem. There are many algorithms available for solving

problems of this type that differ in their computational requirements, convergence and

other properties. However, NEB optimisation is augmented with an additional diffi-

culty: due to the projections involved the objective function that is being minimised
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is unknown. Nevertheless, several optimisation techniques were found to be stable in

working with NEB. Most of these are based on steepest-descent methods and, conse-

quently, are not very efficient. The L-BFGS and QVV minimisers discussed in this

section are based on the deterministic approach for finding local minima.

The basic structure of any local minimiser can be summarised as follows:

• guess initial geometry x0;

• for i = 1,2,... until convergence criterion is satisfied:

1. test if convergence is achieved for current geometry xi

2. construct the search direction p̂i

3. determine the step length ̟i

4. update the geometry to xi + ̟ip̂i

The descent direction p̂ is defined as the one along which the directional derivative is

negative:
(
g (x) , p̂

)
< 0. (2.11)

Negativity of the left hand side guarantees that a lower function value will be found

along p̂ provided that the step is sufficiently small. According to the way algorithms

choose the search direction they are classified as non-derivative, gradient and second-

derivative. Steepest-descent is an example of a gradient-based method, while BFGS

belongs to the class of quasi-Newton methods (or quasi-second-derivative methods).

The steepest-descent search direction is defined as the direction antiparallel to the

gradient at the current point

p̂ = −ĝ, (2.12)

whereas second-derivative-based methods determine the search direction using the

Newton-Raphson equation [31]:

p = −H−1g. (2.13)

The step length ̟ can be determined using either ‘line search’ or ‘trust radius’

approaches. Line search is essentially a one-dimensional minimisation of the function

f̃(̟) = f(xi + ̟pi), which is performed at every step [131]. In the trust-radius-

based approach the step length is adjusted dynamically depending on how well the



2.3. Optimisation of the Nudged Elastic Band 16

minimisation algorithm predicts the change in the object function value [9]. There

is no clear evidence for the superiority of one method over the other [131]; however,

in combination with the limited-memory version of BFGS algorithm the trust ratio

approach was found to be more efficient for treating problems with discontinuities such

as problems involving periodic boundary conditions with cutoffs [9].

2.3.1 Quenched Velocity Verlet Minimiser

The QVV method is based on the velocity Verlet algorithm [32] (VV) as modified by

Jónsson et al. [27], and was originally used for NEB optimisation. VV is a symplectic

integrator that enjoys widespread popularity, primarily in molecular dynamics (MD)

simulations where it is used for numerical integration of Newton’s equations of motion.

Its main advantage over the standard Verlet method is the minimisation of the round-

off errors. At each time step δt the coordinates and the velocities V are updated from

the coupled first-order differential equations in the following manner [32]:

X (t + δt) = X (t) + δtV (t)− δt2

2m
g (t) , (2.14)

V

(
t +

1

2
δt

)
= V (t)− δt

2m
g (t) , (2.15)

V (t + δt) = V

(
t +

1

2
δt

)
− δt

2m
g (t + δt) , (2.16)

where m is the atomic mass. The algorithm involves two stages, with a force evaluation

in between. First the positions are updated according to Equation 2.14, and the veloc-

ities at midstep t + δt/2 are then computed using Equation 2.15. After the evaluation

of the gradient at time t + δt the velocity is updated again [Equation 2.16] to complete

the move. To obtain minimisation it is necessary to remove kinetic energy, and this

can be done in several ways. If the kinetic energy is removed completely every step the

algorithm is equivalent to a steepest-descent minimisation, which is rather inefficient.

Instead, it was proposed by Jónsson et al. [27] to keep only the velocity component that

is antiparallel to the gradient at the current step. If the force is consistently pointing

in the same direction the system accelerates, which is equivalent to increasing the time

step [27]. However, a straightforward variable time step version of the above algorithm

was reported to be unsuccessful [110].
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2.3.2 L-BFGS Minimiser

The BFGS algorithm belongs to the class of variable metric methods and is slightly

different from the Davidon-Fletcher-Powell (DFP) method in the way in which the

correction term is constructed [132] (see below). It has become generally recognised

that the BFGS algorithm is superior to DFP in convergence tolerances, roundoff error

and other empirical issues [31]. The idea of the variable metric, or quasi-Newton,

method is to build up a good approximation to the inverse Hessian matrix H−1 by

constructing a sequence of matrices {A1,A2,A3, . . . } with the following property:

lim
i→∞

Ai = H−1. (2.17)

If we are successful in doing so, combining two Newton-Raphson equations (see Equa-

tion 2.13) for consecutive iterations i and i + 1, we find that Ai+1 should satisfy

xi+1 − xi = ̟ip̂i = −Ai+1 (gi+1 − gi) , (2.18)

where we have used the property Ai+1 = Ai, which must hold if both xi and xi+1 are

in the neighbourhood of minimum x∗.

At every iteration i the new approximation to the inverse Hessian Ai+1 should be

constructed in order to calculate the next step. The update formula must be consistent

with Equation 2.18 and could take the form

Ai+1 = Ai + Ã, (2.19)

where the correction term Ã is constructed using the gradient difference δg = gi+1−gi,

the step δx = xi+1−xi, and the inverse Hessian matrix from the previous iteration Ai.

The BFGS update correction is [31]

Ã =
δx⊗ δx

(δx, δg)
− u⊗ u

(δg,u)
+ (δg,u)

[(
δx

(δx, δg)
− u

(δg,u)

)
⊗
(

δx

(δx, δg)
− u

(δg,u)

)]
,

(2.20)

where ⊗ denotes the direct product of two vectors, and u = Hiδg.

Since at every iteration the old Hessian is overwritten with a new one n2/2 + n/2

storage locations are needed. This is an entirely trivial disadvantage over the conjugate

gradient methods for any modest value of n [31]. However, for large-scale problems it

is advantageous to be able to specify the amount of storage BFGS is allowed to use.
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There is a version of the BFGS algorithm that allows us to vary the amount of

storage available to BFGS and is particularly suitable for large-scale problems [2]. The

difference between this limited memory BFGS (L-BFGS) algorithm and the standard

BFGS is in the Hessian matrix update. L-BFGS stores each correction separately and

the Hessian matrix is never formed explicitly. To store each correction to the Hessian

2n storage locations are needed [1]. The user can specify the number of corrections

L-BFGS is allowed to store. Every iteration Ag is computed according to a recursive

formula described by Nocedal [1]. For the first m iterations L-BFGS is identical to the

BFGS method. After the first m iterations the oldest correction is discarded. Thus,

by varying m the iteration cost can also be controlled, which makes the method very

efficient and flexible. In general, because only m recent corrections are stored L-BFGS

is better able to use additional storage to accelerate convergence. Here we employed a

modified version of Nocedal’s L-BFGS implementation [3] in which the line search was

removed and the maximum step size was limited for each image separately.

2.4 A Single-ended Method: Eigenvector-following

Single-ended methods use only the function and its derivatives to search for a transition

state from the starting point (the initial guess). Since a transition state is a local

maximum in one direction but a minimum in all the others it is not generally possible

to use standard minimisation methods for this purpose.

Newton-type optimisation methods are based on approximating the objective func-

tion locally by a quadratic model and then minimising that function approximately

using, for example, the Newton-Raphson (NR) approach [31]. However, the NR algo-

rithm can converge to a stationary point of any index [130]. To converge to a transition

state the algorithm may need to start from a geometry at which the Hessian has exactly

one negative eigenvalue and the corresponding eigenvector is at least roughly parallel

to the reaction coordinate. Locating such a point can be a difficult task and several

methods have been developed that help to increase the basins of attraction of transition

states, which gives more freedom in choosing the starting geometry [9, 19, 22, 24].

The most widely used single-ended transition state search method is eigenvector-

following (EF). In it simplest form it requires diagonalisation of the Hessian matrix [12–
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15]. For larger systems it is advantageous to use hybrid EF methods that avoid either

calculating the Hessian or diagonalising it [8, 22, 23, 133].

We start by reviewing the theory behind the Newton-Raphson methods. Solving

the eigenvalue problem

HC = CΛ (2.21)

yields the matrix C, the columns of which are the eigenvectors ci, and the diagonal

matrix Λ, with eigenvalues λi on the diagonal. The matrix C defines a unitary trans-

formation to a new orthogonal basis {ci}, in which the original Hessian matrix H is

diagonal

C−1HC = Λ, (2.22)

so that Equation 2.13 is simplified to

p′i = − g′i
λi

, (2.23)

where g′ is the gradient vector in the new basis, which is related to the original gradient

vector g as

g′ = CTg, (2.24)

because of the unitarity of C

C−1 = CT . (2.25)

The unnormalised search direction p′ is defined similarly.

After taking a step of length ̟ = |p| in the direction p, as prescribed by Equa-

tion 2.23, the energy changes by

∆V ′ = −1

2
g′Λ−1g′ (2.26)

provided our quadratic approximation to V (X) is perfect. In general λi ∈ R and terms

in Equation 2.26 with λi < 0 and λi > 0 increase and decrease the energy, respectively.

For isolated molecules and bulk models with periodic boundary conditions the Hessian

matrix is singular: there are three zero eigenvalues that correspond to overall trans-

lations. Non-linear isolated molecules have three additional zero eigenvalues due to

rotations. Luckily, in all cases for which λi = 0 the analytic form of the corresponding

eigenvectors ci is known so the eigenvalue shifting procedure could be applied:

H′ = H +
∑

i

λ̃ici ⊗ cT
i , (2.27)
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where λ̃i are the new eigenvalues. In this work all the zero eigenvalues were shifted

by the same amount (106). As a result, detH′ 6= 0 and problems with applying Equa-

tion 2.23 do not arise.

The analytic forms of the ci’s corresponding to translations along the x, y and z

directions are

ĉ1 =

√
1

N




1

0

0

1

0

0
...




, ĉ2 =

√
1

N




0

1

0

0

1

0
...




, and ĉ3 =

√
1

N




0

0

1

0

0

1
...




, (2.28)

respectively. The eigenvector that corresponds to rotation about the x axis by a small

angle φ can be obtained as

ĉ4 = R̃xx̂− x̂, (2.29)

where x̂ = (x1, y1, z1, x2, . . . )
T is a normalised 3N -dimensional vector describing the po-

sition before the rotation, and R̃x is Maclaurin series expansion of the 3N -dimensional

rotation matrix [134] Rx with respect to a small angle φ truncated to the second order.

The displacement vectors due to infinitesimal rotation about the x, y and z axes are

therefore

ĉ4 =




0

−φ2

2
y1 + φz1

−φy1 −
φ2

2
z1

0

−φ2

2
y2 + φz2

−φy2 −
φ2

2
z2

...




, ĉ5 =




−φ2

2
x1 − φz1

0

φx1 −
φ2

2
z1

−φ2

2
x2 − φz2

0

φx2 −
φ2

2
z2

...




, and ĉ6 =




−φ2

2
x1 + φy1

−φx1 −
φ2

2
y1

0

−φ2

2
x2 + φy2

−φx2 −
φ2

2
y2

0
...




,

(2.30)

respectively.

If started from a point at which the Hessian matrix has n negative eigenvalues, the
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NR method is expected to converge to a stationary point of index n. However, the step

taking procedure may change the index as optimisation proceeds.

Introducing Lagrange multipliers allows a stationary point of specified index to be

located. Consider a Lagrangian function

L = −V ′(x′0)−
3N∑

α=1

[
g′α(x′0) p′α +

1

2
λα p′

2
α −

1

2
µα(p′

2
α − c2

α)

]
, (2.31)

where a separate Lagrange multiplier µα is used for every eigendirection α, cα is a

constraint on the step p′α, λα is the αth eigenvalue of H′, which is defined in Equa-

tion 2.27, and x′0 is the point about which the potential energy function V ′(x) was

expanded. Primes, as before, denote that components are expressed in the orthogonal

basis. Differentiating Equation 2.31 with respect to p′ and using the condition for a

stationary point the optimal step can be obtained:

p′α =
g′α(x′0)

µα − λα
. (2.32)

The predicted energy change corresponding to this step is

∆V ′ =

3N∑

α=1

(µα − λα/2)

(µα − λα)2
g′α(x′0)

2. (2.33)

We have some freedom in choosing the Lagrange multipliers µα as long as for the

eigendirections for which an uphill (downhill) step is to be taken µα > λα/2 (µα <

λα/2). The following choice of Lagrange multipliers allows the recovery of the Newton-

Raphson step in the vicinity of a stationary point [9]:

µα = λα ±
1

2
|λα|

(
1 +

√
1 + 4g′α(x′0)

2/λ2
α

)
, (2.34)

with the plus sign for an uphill step, and the minus sign for a downhill step.

In cases when Hessian diagonalisation is impossible or undesirable the smallest

eigenvalue and a corresponding eigenvector can be found using an iterative method [135].

2.5 Results

The springs should distribute the images evenly along the NEB path during the op-

timisation, and the choice of kspr must be made at the beginning of each run. It has

been suggested by Jónsson and coworkers that since the action of the springs is only
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felt along the path the value of the spring constant is not critical as long as it is not

zero [27]. If kspr is set to zero then sensible behaviour occurs for the first several tens

of iterations only; even though g‖ is projected out, τ̂ fluctuates and further optimi-

sation will eventually result in the majority of images gradually sliding down to local

minima [27].

2.5.1 Slow-response Quenched Velocity Verlet

In practice we find that the value of kspr affects the convergence properties and the

stability of the optimisation process. This result depends on the type of minimiser

employed and may also depend on minimiser-specific settings. Here we analyse the

convergence properties of NEB minimisations using the QVV minimiser (NEB/QVV)

and their dependence on the type of velocity quenching. From previous work it is

not clear when is the best time to perform quenching during the MD minimisation of

the NEB [27–29]. Since the VV algorithm calculates velocities based on the gradients

at both current and previous steps quenching could be applied using either of these

gradients.

Specifically, it is possible to quench velocities right after advancing the system us-

ing Equation 2.14, at the half-step in the velocity evaluation (quenching intermediate

velocities at time t+ δt/2) using either the old or new gradient [Equation 2.15], or after

completion of the velocity update. In Figure 2.4 we present results for the stability of

NEB/QVV as a function of the force constant parameter for three of these quenching

approaches. We will refer to an NEB optimisation as stable for a certain combination

of parameters (e.g. time integration step, number of images) if the NEB steadily con-

verges to a well-defined path and/or stays in its proximity until the maximal number

of iterations is reached or the convergence criterion is satisfied.

We have performed some of the tests on the Müller-Brown (MB) two-dimensional

surface [25]. This widely used surface does not present a very challenging or realistic

test case, but if an algorithm does not behave well for this system it is unlikely to be

useful. MB potential is defined as a sum of four terms, each of which takes the form

Vi(x, y) = α exp
[
a (x− x0)

2 + b (x− x0) (y − y0) + c (y − y0)
2
]
, (2.35)

where x and y are variables and α, a, b, c, x0 and y0 are parameters. In the form
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Figure 2.3: A contour plot of Müller-Brown surface [25]. Transition states are designated

with green circles.

Vi(α, a, b, c, x0 , y0) these parameters can be written down as V1(−200,−1, 0,−10, 1, 0),

V2(−100,−1, 0,−10, 0, 0.5), V3(−170,−6.5, 11,−6.5,−0.5, 1.5) and V4(15, 0.7, 0.6, 0.7,−1, 1).

A contour plot of Müller-Brown surface is depicted in Figure 2.3.

Figure 2.4 shows the results of several thousand optimisations for a 17-image band

with the MB two-dimensional potential [25] using QVV minimisation and a time step of

0.01 (consistent units) for different values of kspr. Each run was started from the initial

guess obtained using linear interpolation and terminated when the root-mean-square

(RMS) gradient became less than 0.01. We define the RMS gradient for the NEB as

g⊥RMS =

√∑Ni

i=1|g⊥i |
Niη

(2.36)

where Ni is the number of images in the band and η is the number of atomic degrees

of freedom available to each image.

It seems natural to remove the velocity component perpendicular to the gradient
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Figure 2.4: (a) Number of iterations, ℓ, and (b) average deviation from the average image

separation, ς, as a function of the spring force constant, kspr , obtained using a 17-image NEB

on the Müller-Brown surface [25]. Minimisation was performed using QVV with time step

0.01 and RMS force termination criterion 0.01. The number of iterations is shown for velocity

quenching after the coordinate update (diamonds), after the gradient evaluation (squares) and

at the half-step through the velocities update (stars).
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at the current point when the geometry X (t), gradient g (t) and velocity V (t) are

available, i.e.

VQ (t) =
(
V (t) , ĝ (t)

)
ĝ (t) , (2.37)

where VQ (t) is the velocity vector after quenching. However, we found this approach

to be the least stable of all — the optimisation was slow and convergence was very

sensitive to the magnitude of the time step. Hence we do not show any results for this

type of quenching.

From Figure 2.4 (a) we see that the best approach is to quench the velocity after the

coordinate update. The optimisation is then stable for a wide range of force constant

values, and the images on the resulting pathway are evenly distributed. In this quench-

ing formulation the velocity response to a new gradient direction is retarded by one step

in coordinate space: the step is still taken in the direction V (t) but the corresponding

velocity component is removed. To implement this slow-response QVV (SQVV) it is

necessary to modify the VV algorithm described in Section 2.5.1 by inserting Equa-

tion 2.37 in between the two stages described by Equation 2.14 and Equation 2.15.

The second-best approach after SQVV is to quench the velocity at midstep t+ δt/2

using the new gradient. On average, this algorithm takes twice as long to converge

the NEB to a given RMS gradient tolerance compared to SQVV. However, the method

is stable for the same range of spring force constant values and produces a pathway

in which the images are equispaced more accurately than the other formulations [see

Figure 2.4 (b)].

The least successful of the three QVV schemes considered involves quenching ve-

locities at mid-step using the gradient from the previous iteration (stars in Figure 2.4).

Even though the number of iterations required is roughly comparable to that obtained

by quenching using the new gradient, it has the smallest range of values for the force

constant where it is stable. Some current implementations of NEB [136, 137] (intended

for use in combination with electronic structure codes) use this type of quenching in

their QVV implementation.

We have also conducted analogous calculations for more complicated systems such

as permutational rearrangements of Lennard-Jones clusters. The results are omitted

for brevity, but agree with the conclusions drawn from the simpler 2D model described
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above. The same is true for the choice of force constant investigated in the following

section.

2.5.2 Choice of the Force Constant

We find that if the force constant is too small many more iterations are needed to

converge the images to the required RMS tolerance, regardless of the type of quenching.

In addition, the path exhibits a more uneven image distribution. This result occurs

because at the initial stage the images may have very different gradients from the true

potential along the band, because they lie far from the required path, and the gradient

of the true potential governs the optimisation. When the true RMS force is reduced

the springs start to play a more important role. But at this stage the forces are small

and so is the QVV step size. The influence of the springs is actually most important

during the initial optimisation stage, for it can determine the placement of images

in appropriate regions. It is less computationally expensive to guide an image into

the right region at the beginning of an optimisation than to restore the distribution

afterwards by dragging it between two minima through a transition state region.

If kspr is too big the NEB never converges to the required RMS gradient tolerance

value. Instead, it stays in proximity to the path but develops oscillations: adjacent

images start to move in opposite directions. For all types of quenching we observed

similar behaviour when large values of the force constant were used. This problem is

related to the step in coordinate space that the optimiser is taking: for the SQVV case

simply decreasing the time step remedies this problem.

2.5.3 Comparison of SQVV and L-BFGS Minimisers for the MB Surface

We tested the NEB/L-BFGS method by minimising a 17-image NEB for the two-

dimensional Müller-Brown surface [25]. Our calculations were carried out using the

OPTIM program [138]. The NEB method in its previous formulation [28] and a modified

L-BFGS minimiser [9] were implemented in OPTIM in a previous discrete path sampling

study [8]. We used the same number of images, initial guess and termination criteria

as described in Section 2.5.1 to make the results directly comparable.

Figure 2.5 shows the performance of the L-BFGS minimiser as a function of kspr.
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We used the following additional L-BFGS specific settings. The number of corrections

in the BFGS update was set to m = 4 (Nocedal’s recommendation for the number of

corrections is 3 6 m 6 7, see Reference [3]), the maximum step size was 0.1, and we

limited the step size for each image separately, i.e.

|pj | 6 0.1, (2.38)

where pj is the step for image j. The diagonal elements of the inverse Hessian were

initially set to 0.1.

From Figure 2.5 it can be seen that the performance of L-BFGS minimisation

is relatively independent of the choice of force constant. All the optimisations with

30 6 kspr 6 10, 000 converged to the steepest-descent path, and, for most of this range,

in less than 100 iterations. This method therefore gives roughly an order of magnitude

improvement in speed over SQVV minimisation [see Figure 2.4 (a)].

We found it helpful to limit the step size while optimising the NEB with the L-BFGS

minimiser. The magnitude and direction of the gradient on adjacent images can vary

significantly. Taking bigger steps can cause the appearance of temporary discontinuities

and kinks in the NEB. The NEB still converges to the correct path, but it takes a while

for these features to disappear and the algorithm does not converge any faster.

2.5.4 Doubly Nudged Elastic Bands

The NEB/QVV approach has previously been systematically tested on systems with

around η = 100 degrees of freedom [107]. However, in the majority of cases these

test systems could be divided into a ‘core’ and a smaller part that actually changes

significantly. The number of active degrees of freedom is therefore significantly smaller

than the total number in these tests. For example, prototropic tautomerisation of

cytosine nucleic acid base (η = 33) involves motion of one hydrogen atom along a

quasi-rectilinear trajectory accompanied by a much smaller distortion of the core.

We have therefore tested the performance of the NEB/SQVV and NEB/L-BFGS

schemes for more complicated rearrangements of Lennard-Jones (LJ) clusters to vali-

date the results of Section 2.5.2, and to investigate the stability and performance of

both approaches when there are more active degrees of freedom. Most of our test cases

involve permutational isomerisation of the LJ7, LJ38 and LJ75 clusters. These examples
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Figure 2.5: (a) Number of iterations, ℓ, and (b) average deviation from average image sep-

aration, ς, as a function of the spring force constant, kspr , obtained using a 17-image NEB

for the Müller-Brown surface [25]. Minimisation was performed using L-BFGS with number of

corrections m = 4, maximum step size 0.1 and RMS force termination criterion 0.01.
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include cases with widely varying separation between the endpoints, integrated path

length, number of active degrees of freedom and cooperativity.

Permutational rearrangements are particularly interesting because it is relatively

difficult to produce an initial guess for the NEB run. In contrast, linear interpolation

between the endpoints was found to provide a useful initial guess for a number of simpler

cases [27]. For example, it was successfully used to construct the NEB for rearrange-

ments that involve one or two atoms following approximately rectilinear trajectories,

and for migration of a single atom on a surface [107]. For more complex processes

an alternative approach adopted in previous work is simply to supply a better initial

guess ‘by hand’, e.g. construct it from the images with unrelaxed geometries contain-

ing no atom overlaps [107]. The ‘detour’ algorithm described in previous calculations

that employ the ridge method could also be used to avoid ‘atom-crashing’ in the initial

interpolation [93].

It has previously been suggested that it is important to eliminate overall rotation

and translation (ORT) of each image during the optimisation of an NEB [27]. We have

implemented this constraint in the same way as Jónsson et al., by freezing one atom,

restricting the motion of a second atom to a plane, and constraining the motion of a

third atom to a line by zeroing the appropriate components of the NEB gradient.

We were able to obtain stable convergence in NEB/L-BFGS calculations only for

simple rearrangements, which confirms that straightforward L-BFGS optimisation of

the NEB is unstable [107]. Figure 2.6 shows the performance of the NEB/SQVV [Fig-

ure 2.6 (a)] and NEB/L-BFGS [Figure 2.6 (b)] approaches for one such rearrangement.

These calculations were carried out using a 7-image NEB both with (diamonds) and

without (stars) removing ORT for isomerisation of an LJ7 cluster (global minimum →
second-lowest minimum). The number of iterations, ℓ, is proportional to the number

of gradient evaluations regardless of the type of minimiser. Hence, from Figure 2.6 we

conclude that for this system NEB/L-BFGS is faster than NEB/SQVV by approxi-

mately two orders of magnitude. However, removal of ORT leads to instability in the

NEB/L-BFGS optimisation: the images do not stay in proximity to the required path

for long and instead diverge from it [see inset in Figure 2.6 (b)].

By experimentation we have found that the main source of the instabilities is the
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Figure 2.6: RMS gradient g⊥RMS as a function of iteration number ℓ. A 7-image NEB was used

to model an isomerisation path in the LJ7 cluster (global minimum→ second-lowest minimum).

Minimisation was performed using the SQVV (a) and L-BFGS (b) methods. Results are shown

for minimisations with and without removing overall rotation and translation (diamonds and

stars, respectively). The inset in (a) depicts the average deviation from the average image

separation, ς, as a function of iteration number for minimisations using SQVV, while the inset

in (b) shows g⊥RMS recorded for 1000 iterations of L-BFGS minimisations. These calculations

were all continued for a fixed number of iterations, regardless of convergence.
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complete removal of g̃⊥. Instead, the inclusion of some portion of g̃⊥ in the NEB

gradient, i.e.

gNEB = g⊥ + g̃‖ + g̃∗, (2.39)

where g̃∗ = ξg̃⊥, makes the NEB/L-BFGS calculations stable but introduces some ad-

ditional corner-cutting, as well as an extra parameter, ξ. Since we use the transition

state candidates from NEB as starting points for further EF calculations the corner-

cutting is not a drawback as long as the transition state candidates are good enough.

By adjusting ξ in the range of (0.01, 0.1) we were able to achieve satisfactory perfor-

mance for the NEB/L-BFGS method in a number of cases. However, an alternative

modification, described below, proved to be even more successful.

The drawback of the NEB gradient described by Equation 2.39 stems from the

interference of g⊥ and ξg̃⊥, and becomes particularly noticeable when the projection

of ξg̃⊥ on g⊥ and g⊥ itself are of comparable magnitude. This problem is analogous to

the interference of g and g̃ in the original elastic band method, which was previously

solved by ‘nudging’ [28]. We have therefore constructed the gradient of a new ‘doubly’

nudged elastic band (DNEB) using

g̃∗ = g̃⊥ − (g̃⊥, ĝ⊥)ĝ⊥. (2.40)

In this formulation some corner-cutting may still occur because the images tend to move

cooperatively during optimisation; the spring gradient g̃⊥DNEB acting on one image can

still indirectly interfere with the true gradients of its neighbours. In our calculations

this drawback was not an issue, since we are not interested in estimating properties

of the path directly from its discrete representation. Instead we construct it from

steepest-descent paths calculated after converging the transition states tightly using

the EF approach. We have found DNEB perfectly adequate for this purpose.

We have implemented DNEB method in our OPTIM program [138]. Equation 2.2

was used to obtain components of both spring gradient and true gradient, Equation 2.4

to calculate pathway tangent, and Equations 2.39-2.40 to evaluate the final DNEB

gradient. We note that although we employed the improved tangent from Equation 2.4,

we did not use Equation 2.5 to obtain g̃‖. This implementation detail was not clarified

in Reference [7], and we thank Dr. Dominic R. Alfonso for pointing that out.
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We have also tested a number of approaches that might be useful if one wants

to produce a full pathway involving a number of transition states for a complicated

rearrangement in just one NEB run. One of these, for instance, is a gradual removal of

the g̃∗ component from the NEB gradient once some convergence criterion is achieved.

This removal works remarkably well, particularly in situations with high energy initial

guesses, which occur frequently if the guessing is fully automated. This adjustment can

be thought of as making the band less elastic in the beginning in order to resolve the

highest-energy transition state regions first.

2.5.5 Comparison of the DNEB/L-BFGS and DNEB/SQVV Methods for

Permutational Isomerisations of LJ7

It is sometimes hard to make a direct comparison of different double-ended methods for

a particular rearrangement because the calculations may converge to different paths.

Another problem concerns the choice of a consistent termination criterion: the RMS

force usually converges to some finite system-dependent value, which in turn may de-

pend on the number of images and other parameters. A low-energy chain of NEB images

does not necessarily mean that a good pathway has been obtained, since it may arise

because more images are associated with regions around local minima, rather than the

higher energy transition state regions. Here we present the results of DNEB/L-BFGS,

DNEB/SQVV and, where possible, NEB/SQVV calculations for all the distinct per-

mutational rearrangements of the global minimum for the LJ7 cluster (see Figure 2.7

for the endpoints and nomenclature).

It is possible to draw a firm conclusion as to how well the NEB represents the path-

way when the corresponding stationary points and steepest-descent paths are already

known. We therefore base our criterion for the effectiveness of an NEB calculation on

whether we obtain good estimates of all the transition states. By considering several

systems of increasing complexity we hope to obtain comparisons that are not specific

to a particular pathway.

Connections between two minima are defined by calculating an approximation to

the two steepest-descent paths that lead downhill from each transition state, and two

transition states are considered connected if they are linked to the same minimum via
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Figure 2.7: Structures of the most stable isomers for (a) LJ7, (b) LJ38 and (c) LJ75 clusters,

which were used as endpoints in the NEB calculations. The first endpoint was the global

minimum in each case. For LJ38 and LJ75 the second endpoint was chosen to be second-

lowest minimum shown on the right in parts (b) and (c), respectively, while a permutational

isomer of the global minimum was used as the second endpoint in all the LJ7 calculations. The

notation 1–2 denotes an LJ7 rearrangement where the second endpoint is structure (a) with

atoms 1 and 2 swapped. The structures and numbering employed for LJ38 and LJ75 are defined

at http://www-wales.ch.cam.ac.uk/∼sat39/DNEBtests/. Picture of LJ7 was generated using

XMakemol program written by Dr. Matthew Hodges [139]. Structures of LJ38 and LJ75 clusters

were visualised using a Mathematica [140] notebook for making and manipulating triangulated

polyhedra written by Dr. David Wales [141].
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a steepest-descent path. We will say that minima are ‘connected’ if there exists a

path consisting of one or more transition states and intermediate minima linking them.

Permutational isomers of the same minimum are distinguished in these calculations.

We refer to the chain of images produced by the NEB calculation as ‘connected’ if

going downhill from each transition state using steepest-descent minimisation yields a

set of minima that contains the endpoints linked together.

For NEB/SQVV calculations we used the NEB formulation defined in Reference [28].

DNEB is different from the above method because it includes an additional component

in the NEB gradient, as described by Equation 2.39 and Equation 2.40. In addition,

for the following DNEB calculations we did not remove overall rotation and translation

(ORT), because we believe it is unnecessary when our gradient modification is used.

To converge transition state candidates tightly we employed EF optimisation, limiting

the maximum number of EF iterations to five with an RMS force convergence tolerance

of 10−5. (Standard reduced units for the Lennard-Jones potential are used throughout

this work.) Initial guesses for all the following calculations were obtained by linear

interpolation between the endpoints. To prevent ‘atom-crashing’ from causing over-

flow in the initial guess we simply perturbed such images slightly using random atomic

displacements of order 10−2 reduced units.

In each case we first minimised the Euclidean distance between the endpoints

with respect to overall rotation and translation using the method described in Ref-

erence [142].∗ SQVV minimisation was performed with a time step of 0.01 and a

maximum step size per degree of freedom of 0.01. This limit on the step size prevents

the band from becoming ‘discontinuous’ initially and plays an important role only dur-

ing the first 100 or so iterations. The limit was necessary because for the cases when

the endpoints are permutational isomers linear interpolation usually yields bands with

large gradients, and it is better to refrain from taking excessive steps at this stage. We

did not try to select low energy initial guesses for each rearrangement individually, since

one of our primary concerns was to automate this process. For the same reason, all the

L-BFGS optimisations were started from guesses preoptimised using SQVV until the

RMS force dropped below 2.0.

∗Structure alignment methods that are based on finding a pseudorotation matrix that satisfies Eckart

axis conditions might equally well be used for this purpose [143–147].
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Table 2.1: The minimal number of images and total number of gradient calls (in parentheses)

are shown for degenerate rearrangements of LJ7. The image range was 2 6 Ni 6 20 and

the iteration range was 1 < ℓ 6 3, 000Ni. Each SQVV calculation was started from the

guess produced using linear interpolation, while guesses for L-BFGS runs were preoptimised

using DNEB/SQVV until the RMS force dropped below 2.0. Every iteration the images that

satisfy Vi > Vi±1 were optimised further using eigenvector-following. The transition state

candidates that converged to a true transition state within five iterations were used to generate

the connected minima using energy minimisation. If this procedure yielded a connected pathway

the calculation was terminated and the rest of the parameter range was not explored. Otherwise,

the number of images was incremented and the procedure repeated. The number of gradient

calls is a product of the number of images and the total number of iterations. For the L-BFGS

calculations the number of iterations includes the SQVV preoptimisation steps (100 on average)

and the actual number of L-BFGS steps. Dashes signify cases where we were unable to obtain

a connected pathway.

Method 1–2 2–3 3–4 4–5

DNEB/L-BFGS 5(1720) 18(30276) 11(2486) 18(8010)

DNEB/SQVV 16(21648) – 10(14310) –

Table 2.1 shows the minimum number of images and gradient calls required to

produce a connected pathway using the DNEB/L-BFGS and DNEB/SQVV methods.

These calculations were run assuming no prior knowledge of the path. Normally there

is no initial information available on the integrated path length or the number of in-

termediate minima between the endpoints, and it takes some experimentation to select

an appropriate number of images. Our strategy is therefore to gradually increase the

number of images to make the problem as computationally inexpensive as possible.

Hence we increment the number of images and maximum number of NEB iterations in

each calculation until a connected path is produced, in the sense defined above. The

permitted image range was 2 6 Ni 6 20 and the maximum number of NEB iterations

ranged from 1 6 l 6 3, 000Ni. We were unable to obtain connected pathways for any

of the four LJ7 rearrangements using the NEB/SQVV approach.

Table 2.2 presents the results of analogous calculations where we keep the number of
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Figure 2.8: The potential energy, V , as a function of the integrated path length, s, for four

degenerate rearrangements of LJ7. These profiles were constructed using energy minimisation

to characterise the paths connected to transition states obtained by EF refinement of candidate

structures obtained from DNEB calculations [19].

images fixed to 50. Unlike the performance comparison where the number of images is

kept to a minimum (Table 2.1), these results should provide insight into the performance

of the DNEB approach when there are sufficient images to resolve all the transition

states. All the optimisations for a particular rearrangement converged to the same or

an enantiomeric pathway unless stated otherwise. The energy profiles that correspond

to these rearrangements are shown in Figure 2.8.

From Table 2.1 and Table 2.2 we conclude that in all cases the DNEB/L-BFGS

approach is more than an order of magnitude faster than DNEB/SQVV. It is also

noteworthy that the DNEB/SQVV approach is faster than NEB/SQVV because overall

rotation and translation are not removed. Allowing the images to rotate or translate

freely can lead to numerical problems, namely a vanishing norm for the tangent vector,
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Table 2.2: The minimal number of iterations needed to produce connected pathways for four

degenerate rearrangements of LJ7 using a 50-image NEB. The strategy of this calculation is

identical to the one described in the caption to Table 2.1, except that the number of images

was fixed.

Method 1–2 2–3 3–4 4–5

DNEB/L-BFGS 131a 493 171 326

DNEB/SQVV 1130 15178 2777 23405b

NEB/SQVV 11088b – 30627 –

a The number of iterations is the sum of the SQVV preoptimisation steps (100 on average)

and the actual number of iterations needed by L-BFGS minimiser. b This value is not directly

comparable since DNEB converged to a different path that contains more intermediate minima.

Dashes signify cases where we were unable to obtain a connected pathway.

when the image density is very large or the spring force constant is too small. However,

when overall rotation and translation are not allowed there is less scope for improving

a bad initial guess, because the images are more constrained. This constraint usually

means that more images are needed or a better initial guess is required. Our experience

is that such constraints usually slow down convergence, depending on which degrees of

freedom are frozen: if these are active degrees of freedom (see above) the whole cluster

must move instead, which is usually a slow, concerted multi-step process.

2.5.6 A Revised Connection Algorithm

In previous work we have used the NEB approach to supply transition state guesses

for further EF refinement [8, 133]. Double-ended searches are needed in these discrete

path sampling runs to produce alternative minimum–transition state–minimum · · · se-

quences from an initial path. The end minima that must be linked in such calculations

may be separated by relatively large distances, and a detailed algorithm was described

for building up a connected path using successive transition state searches. The perfor-

mance of the DNEB/L-BFGS approach is sufficiently good that we have changed this

connection strategy in our OPTIM program. In particular, the DNEB/L-BFGS method

can often provide good candidates for more than one transition state at a time, and
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may even produce all the necessary transition states on a long path. However, it is still

generally necessary to consider multiple searches between different minima in order to

connect a pair of endpoints. In particular, we would like to use the minimum number

of NEB images possible for reasons of efficiency, but automate the procedure so that

it eventually succeeds or gives up after an appropriate effort for any pair of minima

that may arise in a discrete path sampling run. These calculations may involve the

construction of many thousands of discrete paths. As in previous work we converge the

NEB transition state candidates using eigenvector-following techniques and then use

L-BFGS energy minimisation to calculate approximate steepest-descent paths. These

paths usually lead to local minima, which we also converge tightly. The combination of

NEB and hybrid eigenvector-following techniques [22, 23] is similar to using NEB with

a ‘climbing image’ as described in Reference [29].

The initial parameters assigned to each DNEB run are the number of images and the

number of iterations, which we specify by image and iteration densities. The iteration

density is the maximum number of iterations per image, while the image density is the

maximum number of images per unit distance. The distance in question is the Euclidean

separation of the endpoints, which provides a crude estimation of the integrated path

length. This approach is based on the idea that knowing the integrated path length,

which means knowing the answer before we start, we could have initiated each DNEB

run with the same number of images per unit of distance along the path. In general it

is also impossible to provide a lower bound on the number of images necessary to fully

resolve the path, since this would require prior knowledge of the number of intervening

stationary points. Our experience suggests that a good strategy is to employ as small

an image and iteration density as possible at the start of a run, and only increase these

parameters for connections that fail.

All NEB images, i, for which Vi > Vi±1 are considered for further EF refinement.

The resulting distinct transition states are stored in a database and the corresponding

energy minimised paths were used to identify the minima that they connect. New

minima are also stored in a database, while for known minima new connections are

recorded. Consecutive DNEB runs aim to build up a connected path by progressively

filling in connections between the endpoints or intermediate minima to which they are
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connected. This is an advantageous strategy because the linear interpolation guesses

usually become better as the separation decreases, and therefore fewer optimisation

steps are required. Working with sections of a long path one at a time is beneficial

because it allows the algorithm to increase the resolution only where it is needed.

Our experience is that this approach is generally significantly faster than trying to

characterise the whole of a complex path with a single chain of images.

When an overall path is built up using successive DNEB searches we must select

the two endpoints for each new search from the database of known minima. It is

possible to base this choice on the order in which the transition states were found,

which is basically the strategy used in our previous work [8, 133]. We have found

that this approach is not flexible or general enough to overcome difficulties that arise

in situations when irrelevant transition states are present in the database. A better

strategy is to connect minima based upon their Euclidean separation. For this purpose

it is convenient to classify all the minima into those already connected to the starting

endpoint (the S set), the final endpoint (the F set), and the remaining minima, which

are not connected to either endpoint (the U set). The endpoints for the next DNEB

search are then chosen as the two that are separated by the shortest distance, where

one belongs to S or F, and the other belongs to a different set. The distance between

these endpoints is then minimised with respect to overall rotation and translation, and

an initial guess for the image positions is obtained using linear interpolation. Further

details of the implementation of this algorithm and the OPTIM program are available

online [138].

2.5.7 Applications to Isomerisation of LJ38 and LJ75

As test cases for this algorithm we have considered various degenerate rearrangements of

LJ7, LJ13, LJ38 and LJ75. (A degenerate rearrangement is one that links permutational

isomers of the same structure [9, 148].) In addition, we have considered rearrangements

that link second lowest-energy structure with a global minimum for LJ38 and LJ75

clusters. The PES’s of LJ38 and LJ75 have been analysed in a number of previous

studies [113, 149–151], and are known to exhibit a double-funnel morphology: for both

clusters the two lowest-energy minima are structurally distinct and well separated in
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Ñ = 24.65

π = 0.8119

Nt = 9

Nd = 6

Ng = 123001

Nt = 12

Nd = 13

Ng = 245717

Nt = 12

Nd = 15

Ng = 478204

Nt = 12

Nd = 17

Ng = 387246

Figure 2.9: The potential energy, V , as a function of integrated path length, s, for pathways

linking the two lowest minima of LJ38 and LJ75. Calculations were initiated between two

different sets of permutational isomers of these minima. For each profile the number of transition

states, Nt, number of DNEB runs, Nd, and the total number of gradient calls, Ng, are shown.

Maximum values of Ñ , β and π are marked next to the corresponding transition states. The

endpoints were illustrated in Figure 2.7.

configuration space. This makes them useful benchmarks for the above connection

algorithm. Figure 2.9 depicts the energy profiles obtained using the revised connection

algorithm for rearrangements between the two lowest minima of each cluster. In each

case we have considered two distinct paths that link different permutational isomers of

the minima in question, and these were chosen to be the permutations that give the

shortest Euclidean distances. These paths will be identified using the distance between

the two endpoints; for example, in the case of LJ38 we have paths LJ38 3.274σ and

LJ38 3.956σ, where 21/6 σ is the pair equilibrium separation for the LJ potential.

For each calculation we used the following settings: the initial image density was
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set to 10, the iteration density to 30, and the maximum number of attempts to connect

any pair of minima was limited to three. If a connection failed for a particular pair of

minima then up to two more attempts were allowed before moving to the pair with the

next smallest separation. For the second and third attempts the number of images was

increased by 50% each time. The maximum number of EF optimisation steps was set

to 30 with an RMS force convergence criterion of 10−5. In Figure 2.9 every panel is

labelled with the separation between the endpoints, the number of transition states in

the final pathway, the number of DNEB runs required, and the total number of gradient

calls.

Individual pathways involving a single transition state have been characterised using

indices [152] such as

Ñ =

(∑
t |Xt(S)−Xt(F )|2

)2

∑
t |Xt(S)−Xt(F )|4

, (2.41)

which is a measure of the number of atoms that participate in the rearrangement.∗

Here Xt(S) and Xt(F ) are the position vectors of atom t in the starting and finish-

ing geometries, respectively. The largest values are marked in Figure 2.9 next to the

corresponding transition state. It is noteworthy that the pathways LJ38 3.956σ and

LJ75 4.071σ both involve some highly cooperative steps, and the average value of Ñ is

more than 12 for both of them.

We have found that it is usually easier to locate good transition state candidates for

a multi-step path if the stationary points are separated by roughly equal distances, in

terms of the integrated path length. Furthermore, it seems that more effort is needed

to characterise a multi-step path when transition states involving very different path

lengths are present. In such cases it is particularly beneficial to build up a complete

path in stages. To further characterise this effect we introduce a path length asymmetry

index π defined as

π =
|s+ − s−|
s+ + s−

, (2.42)

where s+ and s− are the two integrated path lengths corresponding to the two downhill

steepest-descent paths from a given transition state. For example, in rearrangement

LJ38 3.956σ, five steps out of nine have π > 0.5.

∗A modification of this Stillinger and Weber’s participation index as well as a new cooperativity

index will be presented in Chapter 3.
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Barrier asymmetry also plays a role in the accuracy of the tangent estimate, the

image density required to resolve particular regions of the path, and in our selection

process for transition state candidates, which is based on the condition Vi > Vi±1.
† To

characterise this property we define a barrier asymmetry index, β, as

β =
|E+ −E−|

max (E+, E−)
, (2.43)

where E+ and E− are the barriers corresponding to the forward and reverse reactions,

respectively. The test cases in Figure 2.9 include a variety of situations, with barrier

asymmetry index β ranging from 0.004 to 1.000. The maximum values of π and β are

shown next to the corresponding transition states in this figure.

We note that the total number of gradient evaluations required to produce the

above paths could be reduced significantly by optimising the DNEB parameters or the

connection strategy in each case. However, our objective was to find parameters that

give reasonable results for a range of test cases, without further intervention.

2.5.8 A Dijkstra-based Selector

An essential part of the connection algorithm is a mechanism to incorporate the in-

formation obtained in all the previous searches into the next one. For large endpoint

separations guessing the initial pathway can be difficult, and there is a large probability

of finding many irrelevant stationary points at the beginning of the calculation.

The connection algorithm described earlier uses one double-ended search per cycle.

However, we have found that this approach can be overwhelmed by the abundance of

stationary points and pathways for complicated rearrangements. We therefore intro-

duce the idea of an unconnected pathway and make the connection algorithm more

focused by allowing more than one double-ended search per cycle.

Before each cycle a decision must be made as to which minima to try and connect

next. Various strategies can be adopted, for example, selection based on the order

in which transition states were found [8], or, selection of minima with the minimal

separation in Euclidean distance space [7]. However, when the endpoints are very

distant in configuration space, neither of these approaches is particularly efficient. The

†Unless there is no maximum in the profile, in which case we consider for transition state searching

the highest energy image.
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number of possible connections that might be tried simply grows too quickly if the S,

F and U sets become large. However, the new algorithm described below seems to be

very effective.

The modified connection algorithm we have used in the present work is based on

a shortest path method proposed by Dijkstra [153, 154]. We can describe the minima

that are known at the beginning of each connection cycle as a complete graph [155],

G = (M,E), where M is the set of all minima and E is the set of all the edges between

them. Edges are considered to exist between every pair of minima u and v, even if they

are in different S, F or U sets, and the weight of the edge is chosen to be a function of

the minimum Euclidean distance between them [142]:

w(u, v) =





0, if u and v are connected via a single transition state,

∞, if n(u, v) = nmax,

f(D(u, v)), otherwise,

(2.44)

where n(u, v) is the number of times a pair (u, v) was selected for a connection attempt,

nmax is the maximal number of times we may try to connect any pair of minima, and

D(u, v) is the minimum Euclidean distance between u and v. f should be a monoton-

ically increasing function, such as f(D(u, v)) = D(u, v)2. We denote the number of

minima in the set M = S ∪ U ∪ F , as m, and the number of edges in the set E as

e = m(m− 1)/2.

Using the Dijkstra algorithm [153, 154] and the weighted graph representation de-

scribed above, it is possible to determine the shortest paths between any minima in

the database. The source is selected to be one of the endpoints. Upon termination of

the Dijkstra algorithm, a shortest path from one endpoint to the other is extracted.

If the weight of this pathway is non-zero, it contains one or more ‘gaps’. Connection

attempts are then made for every pair (u, v) of adjacent minima in the pathway with

non-zero w(u, v) using the DNEB approach [7].

The computational complexity of the Dijkstra algorithm is at worst O(m2), and the

memory requirements scale in a similar fashion. The most appropriate data structure

is a weighted adjacency matrix. For the calculations presented here, the single source

shortest paths problem was solved at the beginning of each cycle, which took less than
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10% of the total execution time for the largest database encountered. We emphasise

here that once an initial path has been found, the perturbations considered in typical

discrete path sampling (DPS) calculations will generally involve attempts to connect

minima that are separated by far fewer elementary rearrangements than the endpoints.

It is also noteworthy that the initial path is unlikely to contribute significantly to the

overall rate constant. Nevertheless, it is essential to construct such a path to begin the

DPS procedure.

The nature of the definition of the weight function allows the Dijkstra algorithm to

terminate whenever a second endpoint, or any minimum connected to that endpoint

via a series of elementary rearrangements, is reached. This observation reduces the

computational requirements by an amount that depends on the distribution of the

minima in the database among the S, U and F sets. One of the endpoints is always a

member of the S set, while the other is a member of F set. Either one can be chosen

as the source, and we have found it most efficient to select the one from the set with

fewest members. However, this choice does not improve the asymptotic bounds of the

algorithm.

2.5.9 Applications to Tryptophan Zippers

Tryptophan zippers are stable fast-folding β-hairpins designed by Cochran et al. [156],

which have recently generated considerable interest [157, 158]. In the present work we

have obtained native to denatured state rearrangement pathways for five tryptophan

zippers: trpzip 1, trpzip 2, trpzip 3, trpzip 3-I and trpzip 4. The notation is adopted

from the work of Du et al. [158]. All these peptides contain twelve residues, except

for trpzip 4, which has sixteen. Tryptophan zippers 1, 2, 3 and 3-I differ only in

the sequence of the turn. Experimental measurements of characteristic folding times

for these peptides have shed some light on the significance of the turn sequence in

determining the stability and folding kinetics of peptides with the β-hairpin structural

motif [158].

To model these molecules we used a modified CHARMM19 force field [4], with

symmetrised Asn, Gln and Tyr dihedral angle and Cter improper dihedral angle terms,

to ensure that rotamers of these residues have the same energies and geometries. These
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changes to the standard CHARMM19 force field are described in detail in Appendix A.

Another small modification concerned the addition of a non-standard amino acid, D-

proline, which was needed to model trpzip 3. The implicit solvent model EEF1 was

used to account for solvation [11], with a small change to the original implementation

to eliminate discontinuities [159].

We have used the Dijkstra-based connection algorithm to obtain folding pathways

for all five trpzip peptides. In each case the first endpoint was chosen to be the na-

tive state structure, which, for 1, 2 and 4 trpzips, was taken from the Protein Data

Bank (PDB) [160]. There are no NMR structures available for 3 and 3-I, so for these

peptides the first endpoint was chosen to be the putative global minimum obtained

using the basin-hopping method [161–163]. The folded state for trpzip 2 is depicted in

Figure 2.10. The total charge of this molecule is 2e (two Lys)−e (Glu)= e. However,

in our calculations the total charge was zero because in the CHARMM19 force field

ionic sidechains and termini are neutral when the EEF1 solvation model is used [11].

The second endpoint was chosen to be an extended structure, which was obtained by

simply minimising the energy of a conformation with all the backbone dihedral an-

gles set to 180 degrees. All the stationary points (including these obtained during the

connection procedure) were tightly converged to reduce the root-mean-squared force

below 10−10 kcal mol−1 Å−1. The unfolded state for trpzip 2 is depicted in Figure 2.11

for example.

Each of the five trpzip pathway searches was conducted on a single Pentium 4

3.0 GHz 512 Mb cache CPU and required less than 24 hours of CPU time. The timings

could certainly be improved by optimising the various parameters employed throughout

the searches. However, it is more important that the connections actually succeed in a

reasonably short time. It only requires one complete path to seed a DPS run, and we

expect the DPS procedure to reduce the length of the initial path by a least a factor

of two in sampling the largest contributions to the effective two-state rate constants.

The results of all the trpzip calculations are shown in Figure 2.12.
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Figure 2.10: The folded state of tryptophan zipper 2 (shown in stereo). This structure con-

tains 12 residues and two terminal capping groups, containing a total of 148 CHARMM19

atoms. The sequence of residues is Ace–Ser–Trp–Thr–Trp–Glu–Asn–Gly–Lys–Trp–Thr–Trp–

Lys–Cbx. The naming convention for amino acid residues is the same as in Reference [164]. N-

and C-termini are capped with the standard CHARMM19 blocking groups, ‘Ace’ (–CO–CH3)

and ‘Cbx’ (–NH–CH3), respectively. The structure was obtained by minimising the first out

of 20 structures deposited in the Protein Data Bank (PDB ID: 1LE1) by Cochran, Skel-

ton, and Starovasnik [156]. The RMS force and modified [165] CHARMM19 energy are

< 10−10 kcalmol−1 Å−1 and −358.3130612 kcalmol−1, respectively. The structural motif of

this de novo peptide is a β-hairpin. It can be seen that the backbone is stabilised by a U-turn

and six hydrogen bonds while four hydrophobic tryptophan sidechains are packed nicely on the

side. Red, blue and light grey balls denote oxygen, nitrogen and hydrogen atoms, respectively.

Dark grey balls denote carbon atoms as well as CHARMM19 united atoms of types CH, CH2

and CH3. Ace and Cbx each contain a single united atom of type CH3. There is one CH2

‘atom’ in each of the four tryptophans (connecting the 5-membered ring of the sidechain with

the backbone). This figure was prepared using MolMol [166].

2.6 Summary

One of the two most important results of this chapter is probably the doubly nudged

elastic band formulation, in which a portion of the spring gradient perpendicular to

the path is retained. With this modification we found that L-BFGS minimisation

of the images is stable, thus providing a significant improvement in efficiency. Con-
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Figure 2.11: The unfolded state of tryptophan zipper 2 (shown in stereo). This structure

was obtained by minimising a conformation with all the backbone dihedral angles set to 180

degrees. The energy of this structure is −323.0716439 kcalmol−1. The RMS deviation from the

minimised PDB structure depicted in Figure 2.10 is 122.70 Å. See the caption of Figure 2.10

for notation and other details.
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Figure 2.12: Energy profiles for native to denatured state rearrangements of tryptophan

zippers found by the Dijkstra-based connection algorithm. For each profile the number of steps

in the pathway, the number of connection algorithm cycles, the total number of DNEB searches

and the total number of stationary points in the database (recorded upon termination of the

algorithm) are shown. The total number of stationary points is presented in the form n, m,

where n is the number of minima and m is the number of transition states. The potential

energy, V , is given in the units of kcal/mol, and the integrated path length, s, is given in the

units of Å.
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straints such as elimination of overall rotation and translation are not required, and

the DNEB/L-BFGS method has proved to be reliable for relatively complicated coop-

erative rearrangements in a number of clusters.

In comparing the performance of the L-BFGS and quenched velocity Verlet (QVV)

methods for optimising chains of images we have also investigated a number of alter-

native QVV schemes. We found that the best approach is to quench the velocity after

the coordinate update, so that the velocity response to the new gradient lags one step

behind the coordinate updates. However, this slow-response QVV (SQVV) method

does not appear to be competitive with L-BFGS.

We have revised our previous scheme [8] for constructing connections between dis-

tant minima using multiple transition state searches. Previously we have used an

NEB/L-BFGS framework for this purpose, with eigenvector-following refinement of

transition state candidates and characterisation of the connected minima using energy

minimised approximations to the steepest-descent paths [8, 133]. When the DNEB/L-

BFGS approach is used we have found that it is better to spend more effort in the

DNEB phase of the calculation, since a number of good transition state guesses can

often be obtained even when the number of images is relatively small. In favourable

cases a complete path linking the required endpoints may be obtained in one cycle.

Of course, this was always the objective of the NEB approach [27–30], but we have

not been able to achieve such results reliably for complex paths without the current

modifications.

When a number of transition states are involved we still find it more efficient to

build up the overall path in stages, choosing endpoints that become progressively closer

in space. This procedure has been entirely automated within the OPTIM program, which

can routinely locate complete paths for highly cooperative multi-step rearrangements,

such as those connecting different morphologies of the LJ38 and LJ75 clusters.

For complex rearrangements the number of elementary steps involved may be rather

large, and new methods for constructing an initial path are needed. This path does

not need to be the shortest, or the fastest, but it does need to be fully connected. The

second most important result of this chapter is probably a connection procedure based

upon Dijkstra’s shortest path algorithm, which enables us to select the most promising
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paths that include missing connections for subsequent double-ended searches. We have

found that this approach enables initial paths containing more than a hundred steps

to be calculated automatically for a variety of systems. Results have been presented

for trpzip peptides here and for buckminsterfullerene, the GB1 hairpin and the villin

headpiece subdomain elsewhere [167]. These paths will be employed to seed future

discrete path sampling calculations. This approach greatly reduces the computational

demands of the method, and has allowed us to tackle more complicated problems. The

new algorithm has also been implemented within our OPTIM program, and a public

domain version is available for download from the Internet [138].



Chapter 3

Properties of Rearrangement

Pathways

There is a difference between knowing

the path and walking the path.

Andy and Larry Wachowski, The Matrix

3.1 Introduction

The number of elementary rearrangements increases exponentially with system size as

for the number of transition states. For instance, there are approximately 30,000 such

pathways on the PES of the 13-atom cluster bound by the Lennard-Jones potential.

When permutation-inversion isomers are included, this number increases by a factor

of order 2 × N ! [9]. For PES’s that support such a large number of stationary points

a whole range of properties is spanned by the corresponding rearrangement pathways.

Understanding these properties can be helpful in answering questions such as why

some rearrangement pathways are harder to find than others and whether there is any

correlation between these properties that we could potentially utilise in studying PES’s.

Two activation barriers can be defined for each pathway in terms of the energy

difference between the transition state and each of the minima. For non-degenerate

rearrangements [9, 148] the two sides of the path are termed uphill and downhill, where

the uphill barrier is the larger one, which leads to the higher minimum. The barriers

51
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and the normal modes of the minima and transition states can be used to calculate

rate constants using harmonic transition state theory [45, 46, 48]. More sophisticated

treatments based on anharmonic densities of states are possible but can be hard to

reconcile with the coarse-grained view of the landscape adopted here, as a detailed

knowledge of the basins of attraction is required [168, 169].

For each local minimum a catchment basin can be defined in terms of all the config-

urations from which steepest-descent paths lead to that minimum [170]. Some of these

paths originate from transition states on the boundary of the catchment basin, which

connect a given minimum to adjacent minima. The integrated path length for such

rearrangements provides a measure of the separation between local minima, and may

be related to the density of stationary points in configuration space. The integrated

path length is usually approximated as the sum of Euclidean distances between config-

urations sampled along appropriate steepest-descent paths [9]. It provides a convenient

coordinate for monitoring the progress of the reaction.

Calculated pathways can always be further classified mechanistically. For exam-

ple, some rearrangements preserve the nearest-neighbour coordination shell for all the

atoms. In previous studies of bulk models these cage-preserving pathways were gener-

ally found to outnumber the more localised cage-breaking processes, which are necessary

for atomic transport [171]. It was found that the barriers for cage-breaking and cage-

preserving processes were similar for bulk LJ systems, while the cage-breaking mecha-

nisms have significantly higher barriers for bulk silicon modelled by the Stillinger-Weber

potential [171].

For minima separated by increasing distances in configuration space, the pathways

that connect them are likely to involve more and more elementary steps, and are not

unique. Finding such paths in high-dimensional systems can become a challenging

task [7, 8]. Some difficulties have been attributed to instabilities and inefficiencies in

transition state searching algorithms [7, 107], as well as the existence of very different

barrier height and path length scales [7]. A new algorithm for locating multi-step

pathways in such cases was presented in the previous chapter.

In the present work we have used the doubly nudged elastic band (DNEB) method [7]

in conjunction with eigenvector-following (EF) algorithms [12–24] to locate rearrange-
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ment pathways in various systems. The LJ potential was used to describe the 13- and

75-atom Lennard-Jones clusters, LJ13 and LJ75. We have also considered a binary

LJ (BLJ) system with parameters σAA = 1.0, σBB = 0.88, σAB = 0.8, ǫAA = 1.0,

ǫBB = 0.5, ǫAB = 1.5, where A and B are atom types. The mixture with A : B ratio

80 : 20 provides a popular model bulk glass-former [171, 172]. We employed a periodi-

cally repeated cubic cell containing 205 A atoms and 51 B atoms. The density was fixed

at 1.2σ−3
AA and the Stoddard-Ford scheme was used to prevent discontinuities [173].

The motivation for this work was our observation that construction of some multi-

step pathways using the connection algorithm described in Chapter 2 is particularly

difficult. We were unable to relate these difficulties to simple properties of the pathways

such as the integrated path length, the uphill and downhill barriers, or the barrier and

path length asymmetries. Instead, more precise measures of localisation and coopera-

tivity are required, as shown in the following sections. It also seems likely that such

tools may prove useful in analysing the dynamics of supercooled liquids, where processes

such as intrabasin oscillations and interbasin hopping have been associated with differ-

ent rearrangement mechanisms [174]. In particular, cooperativity is believed to play

an important role at low temperatures in glass-forming systems [175], and dynamic

heterogeneity may result in decoupling between structural relaxation and transport

properties for supercooled liquids [176].

3.2 Localisation

The outcome of a pathway calculation for an atomic system will generally be a set

of intermediate geometries, and the corresponding energies, for points along the two

unique steepest-descent paths that link a transition state to two local minima. This

discrete representation is a convenient starting point for our analysis of localisation and

cooperativity. We number the structures along the path j = 1, 2, . . . , Nf starting from

one of the two minima and reversing the other steepest-descent path, so that structure

Nf corresponds to the other minimum. The transition state then lies somewhere be-

tween frames 1 and Nf . We define the three-dimensional vector ri(j) to contain the

Cartesian coordinates of atom i for structure j, i.e. ri(j) =
(
Xi(j), Yi(j), Zi(j)

)
, where

Xi(j) is the X coordinate of atom i in structure j, etc.
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For each atom i we also define the displacement between structures j − 1 and j as

di(j) =
∣∣∣ri(j) − ri(j − 1)

∣∣∣. (3.1)

Hence the sum of displacements

di =

Nf∑

j=2

di(j), (3.2)

is an approximation to the integrated path length for atom i, which becomes increas-

ingly accurate for smaller step sizes. The total integrated path length, s, is approxi-

mated as

s =

Nf∑

j=2

√√√√
N∑

i=1

di (j)
2, (3.3)

where N is the total number of atoms. s is a characteristic property of the complete

path, and is expected to correlate with parameters such as the curvature and barrier

height for short paths [9, 177, 178].

The set {d1, d2, . . . , dN} containing all N values of di will be denoted {d}, and

analogous notation will be used for other sets below. We will also refer to the frequency

distribution function, which can provide an alternative representation of such data [179].

For example, the frequency distribution function F for a given continuous variable, x,

tells us that x occurs in a certain interval F(x) times.

Our objective in the present analysis is to provide a more detailed description of

the degree of ‘localisation’ and ‘cooperativity’ corresponding to a given pathway. The

first index we consider is Np, which is designed to provide an estimate of how many

atoms participate in the rearrangement. We will refer to a rearrangement as localised

if a small fraction of the atoms participate in the rearrangement, and as delocalised

in the opposite limit. The second index we define, Nc, is intended to characterise

the number of atoms that move simultaneously, i.e. cooperatively. We will refer to a

rearrangement as cooperative if most of the atoms that participate in the rearrangement

move simultaneously, and as uncooperative otherwise.

The nth moment about the mean for a data set {x1, x2, ..., xM} is the expectation

value of (xi − 〈x〉)n, where 〈x〉 =
∑M

i=1 xi/M and M is the number of elements in the
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Figure 3.1: Two frequency distribution functions F1 and F2 of a continuous variable x are

contrasted. Both functions have the same average m′
1 and standard deviation

√
m2. However,

due to the long tails, F1 has a significantly larger fourth moment m4 and, hence, a larger

kurtosis, γ. If γ > 3 the distribution is said to be peaked or leptocurtic. Distributions with

γ > 3 are known as platycurtic or heavy-tailed.

set. Hence for the set {d} defined above we define the moments, mn, as

mn =
1

N

N∑

i=1

(di − 〈d〉)n . (3.4)

The kurtosis of the set {d} is then defined as the dimensionless ratio

γ(d) =
m4

(m2)2
, (3.5)

and provides a measure of the shape of the frequency distribution function correspond-

ing to {d}. If only one of the atoms moves, or all atoms except one move by the same

amount, then γ(d) = N . Alternatively, if half the atoms move by the same amount

whilst the others are stationary, then γ(d) = 1. Hence, a distribution with a broad

peak and rapidly decaying tails will have a small kurtosis, γ ∼ O(1), while a distribu-

tion with a sharp peak and slowly decaying tails will have a larger value (Figure 3.1).

The kurtosis can therefore identify distributions that contain large deviations from the

average value [179]. For comparison, a Gaussian distribution has γ = 3 and a uniform

distribution has γ = 1.8.
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The above results show that the kurtosis γ(d) can be used to quantify the degree

of localisation or delocalisation of a given rearrangement. However, it has the serious

disadvantage that highly localised and delocalised mechanisms both have large values

of γ(d). Since we are interested in estimating the number of atoms that move relative

to the number with small or zero displacements, a better approach is to use moments

taken about the origin, rather than about the mean, i.e.

m′n =
1

N

N∑

i=1

dn
i , (3.6)

following Stillinger and Weber [152]. Note that while m1 = 0, the first moment m′1 is

the mean value. We therefore estimate the number of atoms that participate in the

rearrangement, Np, as

Np =
N

γ′(d)
, (3.7)

where

γ′(d) =
m′4

(m′2)
2 . (3.8)

For the system with N atoms, if only one atom moves Np = 1, while if K atoms move

by the same amount, Np = K.

A similar index to Np has been employed in previous work [9, 19, 180] using only

the displacements between the two local minima, which corresponds to taking Nf = 2

in Equation 3.2. Using di values based upon a sum of displacements that approximates

the integrated path length for atom i, rather than the overall displacement between the

two minima, better reflects the character of the rearrangement, as it can account for

the nonlinearity of the pathway. To describe this property more precisely we introduce

a pathway nonlinearity index defined by

α =
s−D

s
, (3.9)

where D is the Euclidean distance between the endpoints,

D =

√√√√
N∑

i=1

(ri(Nf )− ri(1))
2. (3.10)

We calculated the α values for a database of 31,342 single transition state pathways

of LJ75 (hereafter referred to as the LJ75 database). The average value of α was 0.4
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with a standard deviation of 0.2, and, hence, there is a significant loss of information

if γ′ is calculated only from the endpoints using Nf = 2. Comparison of the two

indices for the LJ75 database revealed many examples where neglect of intermediate

structures produces a misleading impression of the number of atoms that move. The

definition in Equation 3.7 is therefore suggested as an improvement on previous indices

of localisation [9, 19, 152, 180].

3.3 Cooperativity

Np atoms can participate in a rearrangement according to a continuous range of co-

operativity. At one end of the scale there are rearrangements where Np atoms all

move simultaneously [see Figure 3.2 (a)]. Although these paths exhibit the highest de-

gree of correlated atomic motion they do not usually pose a problem for double-ended

transition state search algorithms [7, 30]. Linear interpolation between the two minima

tends to generate initial guesses that lie close to the true pathway, particularly if α ∼ 0.

At the opposite extreme, atoms can move almost one at a time, following a ‘domino’

pattern [see Figure 3.2 (b)]. Locating a transition state for such rearrangements may

require a better initial guess, since linear interpolation effectively assumes that all the

coordinates change at the same rate.

The degree of correlation in the atomic displacements can be quantified by consid-

ering the displacement ‘overlap’

Ok =

Nf∑

j=2

Ok (j) =

Nf∑

j=2

min
[
dc(1)(j), dc(2)(j), ..., dc(k)(j)

]
, (3.11)

where the index k indicates that O was calculated for k atoms numbered c(1), c(2),...,c(k).

c is a k-dimensional vector that represents a particular choice of k atoms from N , and

hence there are Ck
N = N !/k!(N−k)! possible values of Ok. The index O can be thought

of as a measure of how the displacements of the atoms c(1), c(2), etc. overlap along the

pathway. For example, if two atoms move at different times then O2 is small for this

pair because the minimum displacement in Equation 3.11 is always small. However, if

both atoms move in the same region of the path then O2 is larger.

We now explain how the statistics of the overlaps, Ok, can be used to extract a

measure of cooperativity (Figure 3.3). Suppose that m atoms move simultaneously in
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Figure 3.2: Comparison of cooperative (a) and uncooperative (b) rearrangements of the LJ75

cluster, for mechanisms that are localised mainly on two atoms. The displacement d as a

function of the frame number j is shown for the two atoms that move the most. Panels (c) and

(d) illustrate the potential energy V as a function of frame number j for the rearrangements

in (a) and (b), respectively. Dashed circles indicate flatter parts of the energy profile, which

correspond to the most cooperative regions of the pathway.

a hypothetical rearrangement. Then all the overlaps Ok for k > m will be relatively

small, because one or more atoms are included in the calculation whose motion is

uncorrelated with the others. For overlaps Ok with k 6 m the set of Ok for all possible

choices of k atoms from N will exhibit some large values and some small. The large

values occur when all the chosen atoms are members of the set that move cooperatively,

while other choices give small values of Ok. Hence the kurtosis of the set {Ok}, γ′(Ok),

calculated from moments taken about the origin, will be large for k 6 m, and small for

k > m.

To obtain a measure of how many atoms move cooperatively we could therefore

calculate γ′(O2), γ′(O3), etc. and look for the value of k where γ′(Ok) falls in magnitude.

However, to avoid an arbitrary cut-off, it is better to calculate the kurtosis of the set

{γ′(O2), γ′(O3), ..., γ
′(Ok)}, or γ′[γ′(O)] for short. There are N−2 members of this set,

and by analogy with the definition of Np = N/γ′(d), we could define a cooperativity
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Figure 3.3: γ′(O2) plotted against γ′(d) for the LJ75 pathway database. The figure shows how

γ′(O2) can discriminate between rearrangements that have similar values of γ′(d) but different

cooperativity. The data point for the most cooperative rearrangement localised on two atoms

has Np = Nc = 2.

index Nc = (N − 2)/γ′[γ′(O)] + 1. Then, if γ′(O2) is large, and all the other γ′(Ok)

are small, we obtain γ′(γ′(O)) ∼ N − 2 and Nc ∼ 2, correctly reflecting the number of

atoms that move together.

In practice, there are several problems with the above definition of Nc. Calculating

Nc in this way quickly becomes costly as the number of atoms and/or number of

frames in the pathway increases, because the number of elements in the set {Ok} varies

combinatorially with k. Secondly, as k approaches N the distribution of all the possible

values for Ok becomes more and more uniform. Under these circumstances deviations

from the mean that are negligible in comparison with the overall displacement can

produce large kurtosises. Instead, we suggest a modified (and simpler) definition of Nc,

which better satisfies our objectives.

We first define the overlap of atomic displacements in a different manner. It can be
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seen from Equation 3.11 that the simultaneous displacement of l atoms is included in

each set of overlaps {Ok} with k 6 l. For example, if three atoms move cooperatively

then both the {O2} and {O3} sets will include large elements corresponding to these

contributions. Another redundancy is present within {Ok}, since values in this set

are calculated for all possible subsets of k atoms and the displacement of each atom

is therefore considered more than once. However, we can avoid this redundancy by

defining a single k−overlap, rather than dealing with Ck
N different values.

Recall that di(j) is the displacement of atom i between frames j − 1 and j. The

ordering of the atoms is arbitrary but remains the same for each frame number j. We

now define ∆i(j) as the displacement of atom i in frame j, where index i numbers the

atoms in frame j in descending order, according to the magnitude of di(j), e.g. atom

1 in frame 2 is now the atom with the maximum displacement between frames 1 and

2, atom 2 has the second largest displacement etc. As the ordering may vary from

frame to frame, the atoms labelled i in different frames can now be different. This

relabelling greatly simplifies the notation we are about to introduce. Consider the

k-overlap defined as

Θk =
1

∆tot

Nf∑

j=2

[
∆k(j) −∆k+1(j)

]
, (3.12)

where k ranges from 1 to N , ∆tot =
∑Nf

j=2 ∆1(j) and ∆N+1(j) is defined to be zero for

all j. A schematic illustration of this construct is presented in Figure 3.4. For example,

if only two atoms move in the course of the rearrangement, and both are displaced by

the same amount (which may vary from frame to frame), the only non-zero overlap will

be Θ2.

We can now define an index to quantify the number of atoms that move coopera-

tively as

Nc =

N∑

k=1

kΘk. (3.13)

If only one atom moves during the rearrangement then Nc = 1, while if K atoms displace

cooperatively during the rearrangement then Nc = K. This definition is independent

of the total displacement, the integrated path length, and the number of atoms, which

makes it possible to compare Nc indices calculated for different systems.
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Figure 3.4: The Θ indices for a hypothetical rearrangement localised on three atoms. For

each of these atoms the displacement d as a function of frame number j is shown. The di values

in successive frames are connected with dotted (d1), dashed (d2) and solid (d3) lines. The

corresponding contributions to Θ1, Θ2, and Θ3 are shown as shaded squares and are labelled

accordingly. If the remaining N − 3 atoms do not participate, and the area of one square is S,

the only non-zero overlaps will be Θ1, Θ2, and Θ3 with values 5/9, 3/9 and 1/9, respectively.

3.4 Applications to LJ13 and LJ75 Clusters and BLJ256 Liquid

Figure 3.2 shows results for the most cooperative and uncooperative processes we have

found for the LJ75 cluster that are localised mainly on two atoms. In these calcula-

tions we have used the database of transition states that was found previously as the

result of a discrete path sampling calculation conducted for this system [8, 10]. The

cooperative rearrangement [Figure 3.2(a,c)] is the one with the maximum two-overlap

Θ2. For this pathway Θ2 = 0.7, Np = 3.4, and Nc = 7.7. The values of Np and

Nc both reflect the fact that the motion of the two atoms is accompanied by a slight

distortion of the cluster core. This example shows that while Np and Nc allow us to

quantify localisation and cooperativity, and correctly reflect the number of atoms that

participate and move cooperatively in ideal cases, there will not generally be a simple

correspondence between their values and the number of atoms that move. This com-

plication is due to the fact that small displacements of atoms in the core will generally

occur, no matter how localised the rearrangement is. In addition, the data reduction
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performed in Equation 3.7 and Equation 3.13 means that a range of pathways can give

the same value for Np or Nc. Since the size of the contribution from a large number

of small displacements depends on the shape of the displacement distribution function

the number of possibilities grows with the size of the index.

The uncooperative rearrangement depicted in the Figure 3.2(b,d) was harder to

identify. In principle we could have selected the pathway that maximises Θ1 from all

the rearrangements localised on two atoms. However, this approach picks out rear-

rangements localised on one atom, where distortion of the core accounts for the value

of Np > 1. Instead, we first selected from all the rearrangements with Np < 4 those

where two atoms move by approximately the same amount, while the displacement of

any other atom is significantly smaller. These are the rearrangements that maximise

1/γ({d1, d2}), where d1 and d2 are the total displacements of the two atoms that move

the most. After this procedure we selected the rearrangement with the maximum value

of Θ1. Figure 3.2 (b) shows that this rearrangement features the displacement of one

atom at a time, and the atom that moves first also moves last. For this pathway the

values of Θ1, Np and Nc are 0.7, 3.8 and 5.3, respectively. Further illustrations and

movies of the corresponding rearrangements are available online [181].

Figure 3.2 illustrates several general trends that we have observed for cluster re-

arrangements. Firstly, we have found that the barrier height is smaller for the coop-

erative rearrangements [Figure 3.2(c,d)]. Usually atoms that move cooperatively are

neighbours. Rearrangements generally involve a change of the environment for the

atoms that move. Cooperative motion can reduce this perturbation since for any of

the participants the local environment is partly preserved because it moves with the

atom in question. Flatter points on the energy profile [circled in Figure 3.2(d)] usually

signify a change in the mechanism, i.e. one group of atoms stops moving and another

group starts. By comparing (b) and (d) in Figure 3.2 we conclude that flatter points

on the energy profile correlate with the most cooperative parts of this rearrangement.

A simple correlation between barrier heights and Np and Nc does not seem to exist.

The barrier height is not a function of cooperativity alone, but also of the energetics of

the participating atoms. The way the Np and Nc indices have been defined can make

them insensitive to details of the rearrangements that will affect the energetics. For
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instance, neither index depends on the location of the participating atoms or the di-

rectionality of their motion. In most cases cooperatively moving particles are adjacent,

i.e. localised in space; however, long-distance correlations of atomic displacements also

occur. One such case is depicted in Figure 3.5 (a). This path is nearly symmetric

with respect to the integrated path length (π = 0.01), but is very asymmetric with

respect to the uphill and downhill barrier heights (β = 0.91). This rearrangement

has Np = Nc = 10. Interestingly, Np and Nc calculated separately for both sides of

the pathway are very similar, i.e. the two steepest-descent pathways cannot be distin-

guished using these indices. Close inspection of this rearrangement reveals that one side

of the pathway involves the rearrangement of two atomic triplets that share a vertex,

while the other side involves the drift of all five atoms on the surface of the cluster

[see the insets in Figure 3.5 (a)]. Although Nc does not distinguish these cases, the

motion in the second side of the path is more cooperative. The participating atoms

move together, which results in a significantly lower downhill barrier.

Np and Nc also describe properties of the whole pathway. A significant number

of pathways that we observed were rather non-uniform, i.e. very cooperative phases

alternated with uncooperative ones. To distinguish such pathways in the LJ75 database

we calculated a set {Np} containing Np’s evaluated for each pair of adjacent frames.

Then a selection of pathways was made with m2/(m
′
1)

2 < 0.01, where m2/(m
′
1)

2 is

the moment ratio evaluated for the set {Np}. While this procedure ensured that Np

corresponds closely to the number of atoms that moves between any two snapshots

of the rearrangement, it did not distinguish cases where different atoms contribute

to the value of Np in different frames [see Figure 3.5 (b)]. The average uphill and

downhill barriers for this subset of rearrangements are 100 times smaller than the

average barriers for the complete LJ75 database (Table 3.1). Figure 3.6 shows that Np

and Nc calculated for these rearrangements are highly correlated and span a range of

values, implying that widely different pathways are represented. Finally, all the selected

pathways are an order of magnitude shorter than the average path length for the whole

database, even though this database contains many short rearrangements localised on

one atom.

Figure 3.7 shows the values of the Np and Nc indices plotted against each other for
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Figure 3.5: Two limitations of the cooperativity index Nc. (a) Nc is not sensitive to the

spatial positions of the cooperatively moving atoms, nor to the directionality of their motion.

The energy profile is depicted for a rearrangement of the LJ75 cluster, which is very asymmetric

with respect to barrier height but has similar integrated path lengths on either side of the

transition state. The cooperativity index Nc evaluated separately for the two sides is about

10 in both cases. The motion of the five atoms that displace the most is shown schematically

relative to a reference atom (black). (b) The displacement of two (left) and three (right) atoms

d as a function of the frame number j is shown schematically for a hypothetical pathway. The

rearrangement on the left is more cooperative because two atoms move together over a longer

region of the path. However, the current definition of Nc does not distinguish between these

two cases.

pathway databases calculated for LJ13, LJ75 and BLJ256. The two databases for BLJ256

labelled as 1 and 12 are taken from Reference [171] and correspond to databases BLJ1

and BLJ12 in that paper. BLJ1 and BLJ12 were obtained using two different sampling

schemes intended to provide an overview of a wide range of configuration space and
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Table 3.1: Average uphill and downhill barriers, average integrated path length for the LJ75

rearrangement pathway database. Values are given for the whole database containing 31, 342

paths, and for a subset containing the 57 most cooperative paths. The units of energy and

distance are ǫ and σ, respectively.

All Cooperative

Uphill barrier 3.03 0.06

Downhill barrier 0.97 0.03

Path length 3.08 0.58

a thorough probe of a smaller region, respectively. These databases were constructed

by systematic exploration of the PES, and we refer the reader to the original work

for further details [171]. Each BLJ256 database contains 10, 000 transition states. The

LJ13 and LJ75 databases were obtained in discrete path sampling (DPS) studies [8, 10].

and contain 28, 756 and 31, 342 transition states, respectively. Figure 3.7 is a density

plot where darker shading signifies a higher concentration of data points. The outlying

points are connected by a solid line to define the area in which all the points lie.

Figure 3.7 shows that as Np grows the allowed range of Nc increases, especially for

LJ13. For the LJ75 database rearrangements with Nc > N/2 appear to be very rare

or poorly sampled. Figure 3.7 also shows that for all these systems rearrangements

localised on two or three atoms dominate. This result may be an intrinsic property.

However, it may also be due to the geometric perturbation scheme used in producing the

starting points for the transition state searches employed in generating these databases.

For databases BLJ1 and BLJ12 there are significantly more rearrangements with larger

values of Np and Nc compared to LJ75, which suggests that the abundance of very

localised rearrangements for clusters may be a surface effect. The apparent absence

of cooperative rearrangements in LJ75 database for large values of Np may be due to

the fact that only the pathways between compact phases of this cluster were sampled

thoroughly, i.e. rearrangements involving liquid-like structures that are expected to

have larger values of Nc are probably underrepresented.

Figure 3.8 depicts the average barrier as a function of the participation and cooper-
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Figure 3.6: Nc as a function of Np calculated for the 57 most cooperative rearrangements

from the LJ75 pathway database.

ativity indices. Np and Nc were calculated separately for both sides of the pathway and

the corresponding barriers (uphill or downhill) were averaged to produce a density plot

of barrier height. Data boundaries do not coincide with those shown in Figure 3.7 due

to numerical imprecision in preparing Figure 3.7. Figure 3.8 illustrates that for each

system cooperative rearrangements have the lowest barriers, irrespective of the value

of Np. For clusters, cooperative rearrangements have lower barriers than uncoopera-

tive rearrangements with Np as small as 1 − 3, while for bulk barriers corresponding

to rearrangements with low Np become comparable to these for very cooperative rear-

rangements with high Np.

In further computational experiments we found that attempts to connect the end-

points of uncooperative pathways using the algorithm described in Chapter 2 either

required more images and iterations or converged to an alternative pathway. In some

cases additional difficulties arose, such as convergence to a higher index saddle instead

of a transition state, which can happen if the linear interpolation guess conserves a
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Figure 3.7: Nc as a function of Np calculated from four pathway databases for LJ13, LJ75

and BLJ256 systems. Due to the large number of data points we employ a density plot, where

the darkest shading corresponds to the highest concentration of points. Outlying points are

connected to illustrate the boundaries of the data area. The two BLJ databases are taken from

Reference [171].

symmetry plane. Figure 3.9 shows Nc calculated from Equation 3.13 plotted against

Np for the LJ75 pathway database. Knowing the integrated path length, s, for each

pathway we started doubly nudged elastic band calculations with three images per unit

of distance and 30 iterations per image. Most of the points that correspond to runs
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Figure 3.8: Average barrier height as a function of Np and Nc calculated for the same LJ13,

LJ75 and BLJ256 pathway databases used in Figure 3.7. The indices were calculated separately

for the two sides of each path. In this case the darkest shading corresponds to the highest

barriers. Outlying points are connected to illustrate the boundaries of the data area. The two

BLJ databases are taken from Reference [171].

that failed or converged to an alternative pathways are concentrated in the region of

small values for Nc/Np.

As can be seen from Figure 3.7, the LJ13 database contains significantly more

pathways with large values of Np and Nc compared to LJ75, where most of the re-
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Figure 3.9: Nc as a function of Np calculated for the LJ75 pathway database. For each

pathway we conducted DNEB calculations [7] assuming prior knowledge of the path. Every

DNEB calculation employed 3s images and 90s iterations in each case, where s is the integrated

path length. Out of 31, 342 DNEB runs 25, 158 yielded a connected pathway while the rest did

not (FAILED). Connected pathways are classified further as one-step pathways involving the

correct transition state (OK) or an alternative transition state (ALT), or as multi-step pathways

(MULTI), which involve more than one transition state. For each set of data points best fit

straight lines obtained from linear regression are shown and labelled appropriately.

arrangements are localised on two atoms. The fact that the LJ13 database is almost

exhaustive then suggests that localised rearrangements either start to dominate as the

system size increases or that the sampling scheme used for LJ75 was biased towards

such mechanisms. Systematic sampling of the configuration space for stationary points

often employs perturbations of every degree of freedom followed by minimisation [162].

The LJ13 database was obtained in this fashion, while the LJ75 database was generated

during the DPS approach [8]. In this procedure discrete paths are perturbed by re-

placing local minima with structures obtained after perturbing all the coordinates and

minimising. To investigate whether the perturbation scheme can affect the resulting

database of stationary points in more detail we consider the case of LJ13, since nearly

all the transition states are known. Figure 3.10 presents the results of two independent



3.5. Summary 70

runs aimed at locating most of the transition states for this system. Every cycle a per-

turbation was applied to a randomly selected transition state from the database and the

resulting geometry was used as a starting point for a new transition state search using

eigenvector-following [19, 22–24, 72]. Only distinct permutation-inversion isomers were

saved. In the first run (bottom curve) every degree of freedom was perturbed by 0.4x,

where x is a random number in the interval [−1, 1] [162]. For the second run (top curve)

we introduced a perturbation scheme including correlation. 2 6 K 6 N/2 atoms out of

N were displaced by a vector 0.4(x1, x2, x3), where the components x1, x2 and x3 are

again random numbers drawn from [−1, 1]. The K atoms to be displaced were selected

based on their relative positions in the cluster. One atom was first selected at random,

while the remaining K− 1 were chosen to be its closest neighbours. The top curve was

generated from a run with K = 6. Both runs required approximately the same time to

produce two nearly identical databases, each containing about 29, 000 pathways. How-

ever, as can be seen from Figure 3.7, random perturbation of all the degrees of freedom

results in uncooperative rearrangements being found first, while employing correlated

perturbations has the opposite effect.

3.5 Summary

The most important result of this chapter is probably the introduction of an index

to quantify the cooperativity of atomic rearrangements. With this new measure it

becomes possible to correlate cooperativity and barrier heights, and to show that co-

operative rearrangements generally have lower barriers and shorter path lengths. We

hope that these results will shed new light on relaxation mechanisms in complex sys-

tems, such as glasses and biomolecules, in future applications. For example, in a

peptide or protein a large geometrical change can result from a rearrangement that

could be described in terms of a single dihedral angle. In glasses and supercooled

liquids an important research goal is to understand how observed dynamical proper-

ties, such as atomic diffusion and correlation functions [171, 174, 182, 183], are related

to features of the underlying PES. The classification of elementary rearrangements as

‘cage-breaking’ or ‘cage-preserving’ [171, 184], and the emergence of structures such as

‘megabasins’ [171, 184–186] can now be investigated more precisely in terms of locali-
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Figure 3.10: The average value of Nc for LJ13 pathway databases as new paths are added. 6-

atom correlated perturbations (top curve) and random perturbations of every degree of freedom

(bottom curve) were used to produce starting points for refinement by eigenvector-following [19,

22–24, 72]. Average values were calculated every time 100 new pathways were added.

sation and cooperativity.

We have also demonstrated that cooperative rearrangements are relatively easy

to characterise using double-ended transition state searching algorithms, since linear

interpolation produces an effective initial guess. Uncooperative rearrangements are

usually harder to find using such methods, and alternative initial guesses may be helpful

in these cases.

Single-ended transition state searching has been used both in conjunction with

double-ended methods, and as a way to sample potential energy surfaces for station-

ary points. Stationary point databases constructed using random perturbations fol-

lowed by quenching are likely to be biased towards uncooperative rearrangements. We

have therefore outlined a strategy for generating initial guesses appropriate to single-

ended transition state searching algorithms, which instead favours cooperative rear-

rangements. This approach also includes a parameter that is likely to influence the
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degree of localisation.



Chapter 4

Ensembles of Rearrangement

Pathways

I dreamed a thousand new paths. . .

I woke and walked my old one.

Chinese proverb

4.1 Introduction

Stochastic processes are widely used to treat phenomena with random factors and

noise. Markov processes are an important class of stochastic processes for which fu-

ture transitions do not depend upon how the current state was reached. Markov pro-

cesses restricted to a discrete, finite, or countably infinite state space are called Markov

chains [123, 187, 188]. The parameter that is used to number all the states in the state

space is called the time parameter. Many interesting problems of chemical kinetics

concern the analysis of finite-state samples of otherwise infinite state space [9].

When analysing the kinetic databases obtained from discrete path sampling (DPS)

studies [8] it can be difficult to extract the phenomenological rate constants for processes

that occur over very long time scales [9]. DPS databases are composed of local minima

of the potential energy surface (PES) and the transition states that connect them.

While minima correspond to mechanically stable structures, the transition states specify

how these structures interconvert and the corresponding rates. Whenever the potential

73
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energy barrier for the event of interest is large in comparison with kBT the event

becomes rare, where T is the temperature and kB is Boltzmann’s constant.

The most important tools previously employed to extract kinetic information from a

DPS stationary point database are the master equation [189], kinetic Monte Carlo [190,

191] (KMC) and matrix multiplication (MM) methods [8]. The system of linear mas-

ter equations in its matrix formulation can be solved numerically to yield the time

evolution of the occupation probabilities starting from an arbitrary initial distribu-

tion. This approach works well only for small problems, as the diagonalisation of

the transition matrix, P, scales as the cube of the number of states [9]. In addi-

tion, numerical problems arise when the magnitude of the eigenvalues corresponding

to the slowest relaxation modes approaches the precision of the zero eigenvalue corre-

sponding to equilibrium [192]. The KMC approach is a stochastic technique that is

commonly used to simulate the dynamics of various physical and chemical systems,

examples being formation of crystal structures [193], nanoparticle growth [194] and

diffusion [195]. The MM approach provides a way to sum contributions to phenomeno-

logical two-state rate constants from pathways that contain progressively more steps.

It is based upon a steady-state approximation, and provides the corresponding solution

to the linear master equation [189, 196]. The MM approach has been used to analyse

DPS databases in a number of systems ranging from Lennard-Jones clusters [8, 10] to

biomolecules [133, 197].

Both the standard KMC and MM formulations provide rates at a computational

cost that generally grows exponentially as the temperature is decreased. In this chapter

we describe alternative methods that are deterministic and formally exact, where the

computational requirements are independent of the temperature and the time scale on

which the process of interest takes place.

4.1.1 Graph Theory Representation of a Finite-state Markov Chain

In general, to fully define a Markov chain it is necessary to specify all the possible

states of the system and the rules for transitions between them. Graph theoretical

representations of finite-state Markov chains are widely used [187, 198–200]. Here we

adopt a digraph [154, 201] representation of a Markov chain, where nodes represent
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the states and edges represent the transitions of non-zero probability. The edge ei,j

describes a transition from node j to node i and has a probability Pi,j associated with

it, which is commonly known as a routing or branching probability. A node can be

connected to any number of other nodes. Two nodes of a graph are adjacent if there is

an edge between them [202].

For digraphs all connections of a node are classified as incoming or outgoing. The

total number of incoming connections is the in-degree of a node, while the total number

of outgoing connections is the out-degree. In a symmetric digraph the in-degree and

out-degree are the same for every node [154]. AdjIn[i] is the set of indices of all

nodes that are connected to node i via incoming edges that finish at node i. Similarly,

AdjOut[i] is the set of the indices of all the nodes that are connected to node i via

outgoing edges from node i. The degree of a graph is the maximum degree of all of

its nodes. The expectation value for the degree of an undirected graph is the average

number of connections per node.

For any node i the transition probabilities Pj,i add up to unity,

∑

j

Pj,i = 1, (4.1)

where the sum is over all j ∈ AdjOut[i]. Unless specified otherwise all sums are taken

over the set of indices of adjacent nodes or, since the branching probability is zero for

non-adjacent nodes, over the set of all the nodes.

In a computer program dense graphs are usually stored in the form of adjacency

matrices [154]. For sparse graphs [201] a more compact but less efficient adjacency-

lists-based data structure exists [154]. To store a graph representation of a Markov

chain, in addition to connectivity information (available from the adjacency matrix),

the branching probabilities must be stored. Hence for dense graphs the most convenient

approach is to store a transition probability matrix [187] with transition probabilities

for non-existent edges set to zero. For sparse graphs, both the adjacency list and a list

of corresponding branching probabilities must be stored.

4.1.2 The Kinetic Monte Carlo Method

The KMC method can be used to generate a memoryless (Markovian) random walk

and hence a set of trajectories connecting initial and final states in a DPS database.
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Many trajectories are necessary to collect appropriate statistics. Examples of pathway

averages that are usually obtained with KMC are the mean path length and the mean

first passage time. Here the KMC trajectory length is the number of states (local

minima of the PES in the current context) that the walker encounters before reaching

the final state. The first passage time is defined as the time that elapses before the

walker reaches the final state. For a given KMC trajectory the first passage time is

calculated as the sum of the mean waiting times in each of the states encountered.

Within the canonical Metropolis Monte Carlo approach a step is always taken if

the proposed move lowers the energy, while steps that raise the energy are allowed

with a probability that decreases with the energy difference between the current and

proposed states [32]. An efficient way to propagate KMC trajectories was suggested by

Bortz, Kalos, and Lebowitz (BKL) [190]. According to the BKL algorithm, a step is

chosen in such a way that the ratios between transition probabilities of different events

are preserved, but rejections are eliminated. Figure 4.1 explains this approach for a

simple discrete-time Markov chain. The evolution of an ordinary KMC trajectory is

monitored by the ‘time’ parameter n, n ∈ W, which is incremented by one every time

a transition from any state is made. The random walker is in state 1 at time n = 0.

The KMC trajectory is terminated whenever an absorbing state is encountered. As

P1,1 approaches unity transitions out of state 1 become rare. To ensure that every

time a random number is generated (one of the most time consuming steps in a KMC

calculation) a move is made to a neighbouring state we average over the transitions

from state 1 to itself to obtain the Markov chain depicted in Figure 4.1 (b). Transitions

from state 1 to itself can be modelled by a Bernoulli process [33] with the probability

of success equal to P1,1. The average time for escape from state 1 is obtained as

τ1 = (1− P1,1)

∞∑

n=0

(n + 1)(P1,1)
n =

1

(1− P1,1)
, (4.2)

which can be used as a measure of the efficiency of trapping [203]. Transition proba-

bilities out of state 1 are renormalised:

Pα,1′ =
Pα,1

1− P1,1
,

Pβ,1′ =
Pβ,1

1− P1,1
.

(4.3)
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αα β β

(a) (b)

Figure 4.1: BKL algorithm for propagating a KMC trajectory applied to a three-state Markov

chain. (a) The transition state diagram is shown where states and transitions are represented

by circles and directed arrows, respectively. The Markov chain is parametrised by transition

probabilities Pα,1, Pβ,1 and P1,1. Absorbing states α and β are shaded. If P1,1 is close to unity

the KMC trajectory is likely to revisit state 1 many times before going to α or β. (b) State

1 is replaced with state 1′. The new Markov chain is parametrised by transition probabilities

Pα,1′ , Pβ,1′ and the average time for escape from state 1, τ1. Transitions from state 1′ to itself

are forbidden. Every time state 1′ is visited the simulation ‘clock’ is incremented by τ1.

Similar ideas underlie the accelerated Monte Carlo algorithm suggested by Novotny [26].

According to this ‘Monte Carlo with absorbing Markov chains’ (MCAMC) method, at

every step a Markov matrix, P, is formed, which describes the transitions in a sub-

space S that contains the current state α , and a set of adjacent states that the random

walker is likely to visit from α. A trajectory length, n, for escape from S is obtained

by bracketing a uniformly distributed random variable, r, as

∑

β

[Pn]β,α < r 6
∑

β

[
Pn−1

]
β,α

. (4.4)

Then an n-step leapfrog move is performed to one of the states γ /∈ S and the simulation

clock is incremented by n. State γ is chosen at random with probability

[
RPn−1

]
γ,α

/
∑

γ

[
RPn−1

]
γ,α

, (4.5)

where Rγ,α is the transition probability from state α ∈ S to state γ /∈ S. Both the

BKL and MCAMC methods can be many orders of magnitude faster than the standard

KMC method when kinetic traps are present.

In chemical kinetics transitions out of a state are described using a Poisson process,

which can be considered a continuous-time analogue of Bernoulli trials. The transition
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probabilities are determined from the rates of the underlying transitions as

Pj,i =
kj,i∑

α

kα,i

. (4.6)

There may be several escape routes from a given state. Transitions from any state to

directly connected states are treated as competing independent Poisson processes, which

together generate a new Poisson distribution [179]. n independent Poisson processes

with rates k1, k2, k3, . . . , kn combine to produce a Poisson process with rate k =
∑n

i=1 ki. The waiting time for a transition to occur to any connected state is then

exponentially distributed as k exp(−kt) [204].

Given the exponential distribution of waiting times the mean waiting time in state

i before escape, τi, is 1/
∑

j kj,i and the variance of the waiting time is simply τ2
i .

Here kj,i is the rate constant for transitions from i to j. When the average of the

distribution of times is the property of interest, and not the distribution of times itself,

it is sufficient to increment the simulation time by the mean waiting time rather than

by a value drawn from the appropriate distribution [9, 205]. This modification to the

original KMC formulation [206, 207] reduces the cost of the method and accelerates

the convergence of KMC averages without affecting the results.

4.1.3 Discrete Path Sampling

The result of a DPS simulation is a database of local minima and transition states from

the PES [8–10]. To extract thermodynamic and kinetic properties from this database

we require partition functions for the individual minima and rate constants, kα,β, for

the elementary transitions between adjacent minima β and α. We usually employ

harmonic densities of states and statistical rate theory to obtain these quantities, but

these details are not important here. To analyse the global kinetics we further assume

Markovian transitions between adjacent local minima, which produces a set of linear

(master) equations that governs the evolution of the occupation probabilities towards

equilibrium [189, 196]

dPα(t)

dt
=
∑

β

kα,βPβ(t)− Pα(t)
∑

β

kβ,α, (4.7)

where Pα(t) is the occupation probability of minimum α at time t.
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All the minima are classified into sets A, B and I. When local equilibrium is

assumed within the A and B sets we can write

Pa(t) =
P eq

a PA(t)

P eq
A

and Pb(t) =
P eq

b PB(t)

P eq
B

, (4.8)

where PA(t) =
∑

a∈A Pa(t) and PB(t) =
∑

b∈B Pb(t). If the steady-state approximation

is applied to all the intervening states i ∈ I = {i1, i2, i3, . . . , ini
}, so that

dPi(t)

dt
= 0, (4.9)

then Equation 4.7 can be written as [9]

dPA(t)

dt
= kA,BPB(t)− kB,APA(t),

dPB(t)

dt
= kB,APA(t)− kA,BPB(t).

(4.10)

The rate constants kA,B and kB,A for forward and backward transitions between states

A and B are the sums over all possible paths within the set of intervening minima of

the products of the branching probabilities corresponding to the elementary transitions

for each path:

kDPS
A,B =

′∑

a←b

ka,i1∑

α1

kα1,i1

ki1,i2∑

α2

kα2,i2

· · · kin−1,in∑

αn

kαn,in

kin,b P eq
b

P eq
B

=
′∑

a←b

Pa,i1Pi1,i2 · · ·Pin−1,in

kin,b P eq
b

P eq
B

,

(4.11)

and similarly for kB,A [8]. The sum is over all paths that begin from a state b ∈ B

and end at a state a ∈ A, and the prime indicates that paths are not allowed to revisit

states in B. In previous contributions [8, 10, 133, 197] this sum was evaluated using

a weighted adjacency matrix multiplication (MM) method, which will be reviewed in

Section 4.2.

4.1.4 KMC and DPS Averages

We now show that the evaluation of the DPS sum in Equation 4.11 and the calculation

of KMC averages are two closely related problems.

For KMC simulations we define sources and sinks that coincide with the set of initial

states B and final states A, respectively.∗ Every cycle of KMC simulation involves the

∗Terminology taken from graph theory. In probability theory, state i is called absorbing if Pi,i = 1,

which coincides with our definition of a sink.
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generation of a single KMC trajectory connecting a node b ∈ B and a node a ∈ A. A

source node b is chosen from set B with probability P eq
b /P eq

B .

We can formulate the calculation of the mean first passage time from B to A in

graph theoretical terms as follows. Let the digraph consisting of nodes for all local

minima and edges for each transition state be G. The digraph consisting of all nodes

except those belonging to region A is denoted by G. We assume that there are no

isolated nodes in G, so that all the nodes in A can be reached from every node in G.

Suppose we start a KMC simulation from a particular node β ∈ G. Let Pα(n) be the

expected occupation probability of node α after n KMC steps, with initial conditions

Pβ(0) = 1 and Pα6=β(0) = 0. We further define an escape probability for each α ∈ G as

the sum of branching probabilities to nodes in A, i.e.

EG
α =

∑

a∈A

Pa,α. (4.12)

KMC trajectories terminate when they arrive at an A minimum, and the expected

probability transfer to the A region at the nth KMC step is
∑

α∈G EG
α Pα(n). If there

is at least one escape route from G to A with a non-zero branching probability, then

eventually all the occupation probabilities in G must tend to zero and

ΣG
β =

∞∑

n=0

∑

α∈G

EG
α Pα(n) = 1. (4.13)

We now rewrite Pα(n) as a sum over all n-step paths that start from β and end at

α without leaving G. Each path contributes to Pα(n) according to the appropriate

product of n branching probabilities, so that

ΣG
β =

∑

α∈G

EG
α

∞∑

n=0

Pα(n)

=
∑

α∈G

EG
α

∞∑

n=0

∑

Ξ(n)

Pα,in−1Pin−1,in−2 · · ·Pi2,i1Pi1,β

=
∑

α∈G

EG
α SG

α,β = 1,

(4.14)

where Ξ(n) denotes the set of n-step paths that start from β and end at α without

leaving G, and the last line defines the pathway sum SG
α,β.

It is clear from the last line of Equation 4.14 that for fixed β the quantities EG
α SG

α,β

define a probability distribution. However, the pathway sums SG
α,β are not probabilities,
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and may be greater than unity. In particular, SG
β,β > 1 because the path of zero length is

included, which contributes one to the sum. Furthermore, the normalisation condition

on the last line of Equation 4.14 places no restriction on SG
α,β terms for which EG

α

vanishes.

We can also define a probability distribution for individual pathways. Let Wξ be

the product of branching probabilities associated with a path ξ so that

SG
α,β =

∞∑

n=0

∑

ξ∈Ξ(n)

Wξ ≡
∑

ξ∈α←β

Wξ, (4.15)

where α← β is the set of all appropriate paths from β to α of any length that can visit

and revisit any node in G. If we focus upon paths starting from minima in region B

∑

b∈B

P eq
b

P eq
B

∑

α∈G

EG
α

∑

ξ∈α←b

Wξ =
∑

b∈B

P eq
b

P eq
B

∑

α∈GA

EG
α

∑

ξ∈α←b

Wξ = 1, (4.16)

where GA is the set of nodes in G that are adjacent to A minima in the complete graph

G, since EG
α vanishes for all other nodes. We can rewrite this sum as

∑

ξ∈GA←B

P eq
b

P eq
B

EG
αWξ =

∑

ξ∈A←B

P eq
b

P eq
B

Wξ =
∑

ξ∈A←B

Pξ = 1, (4.17)

which defines the non-zero pathway probabilities Pξ for all paths that start from any

node in set B and finish at any node in set A. The paths ξ ∈ A ← B can revisit any

minima in the G set, but include just one A minimum at the terminus. Note that Wξ

and Pξ can be used interchangeably if there is only one state in set B.

The average of some property, Qξ, defined for each KMC trajectory, ξ, can be

calculated from the Pξ as

〈Qξ〉 =
∑

ξ∈A←B

PξQξ. (4.18)

Of course, KMC simulations avoid this complete enumeration by generating trajectories

with probabilities proportional to Pξ, so that a simple running average can be used

to calculate 〈Qξ〉. In the following sections we will develop alternative approaches

based upon evaluating the complete sum, which become increasingly efficient at low

temperature. We emphasise that these methods are only applicable to problems with

a finite number of states, which are assumed to be known in advance.
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The evaluation of the DPS sum defined in Equation 4.11 can also be rewritten in

terms of pathway probabilities:

kDPS
A,B =

∞∑

n=0

′∑

Ξ(n)

Pα,i1Pi1,i2 · · ·Pin−1,in

kin,β P eq
β

P eq
B

,

=
∞∑

n=0

′∑

Ξ(n)

Pα,i1Pi1,i2 · · ·Pin−1,inPin,βτ−1
β

P eq
β

P eq
B

=
′∑

ξ∈A←B

Pξτ
−1
β ,

(4.19)

where the prime on the summation indicates that the paths are not allowed to revisit

the B region. We have also used the fact that kin,b = Pin,b/τb.

A digraph representation of the restricted set of pathways defined in Equation 4.19

can be created if we allow sets of sources and sinks to overlap. In that case all the nodes

A ∪ B are defined to be sinks and all the nodes in B are the sources, i.e. every node

in set B is both a source and a sink. The required sum then includes all the pathways

that finish at sinks of type A, but not those that finish at sinks of type B. The case

when sets of sources and sinks (partially) overlap is discussed in detail in Section 4.6.

4.1.5 Mean Escape Times

Since the mean first passage time between states B and A, or the escape time from

a subgraph, is of particular interest, we first illustrate a means to derive formulae for

these quantities in terms of pathway probabilities.

The average time taken to traverse a path ξ = α1, α2, α3, . . . , αl(ξ) is calculated as

tξ = τα1 + τα2 + τα3 , . . . , ταl(ξ)−1
, where τα is the mean waiting time for escape from

node α, as above, αk identifies the kth node along path ξ, and l(ξ) is the length of path

ξ. The mean escape time from a graph G if started from node β is then

T G
β =

∑

ξ∈A←β

Pξtξ. (4.20)

If we multiply every branching probability, Pα,β, that appears in Pξ by exp(ζτβ) then
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the mean escape time can be obtained as:

T G
β =


 d

dζ


 ∑

ξ∈A←β

Pαl(ξ) ,αl(ξ)−1
eζτl(ξ)−1Pαl(ξ)−1,αl(ξ)−2

eζτl(ξ)−2 . . . Pα2,α1e
ζτα1






ζ=0

=


 d

dζ


 ∑

ξ∈A←β

Pαl(ξ) ,αl(ξ)−1
Pαl(ξ)−1 ,αl(ξ)−2

. . . Pα2,α1e
ζtξ






ζ=0

=
∑

ξ∈A←β

Pξtξ.

(4.21)

This approach is useful if we have analytic results for the total probability ΣG
β , which

may then be manipulated into formulae for T G
β , and is standard practice in probability

theory literature [208, 209]. The quantity Pα,βeζτβ is similar to the ‘ζ probability’

described in Reference [208]. Analogous techniques are usually employed to obtain T G
β

and higher moments of the first-passage time distribution from analytic expressions

for the first-passage probability generating function (see, for example, References [210,

211]). We now define P̃α,β = Pα,βeζτβ and the related quantities

ẼG
α =

∑

a∈A

P̃a,α = EG
α eζτα ,

W̃ξ = P̃αl(ξ) ,αl(ξ)−1
P̃αl(ξ)−1,αl(ξ)−2

. . . P̃α2,α1 =Wξe
ζtξ ,

P̃ξ = W̃ξP
eq
b /P eq

B ,

S̃G
α,β =

∑

ξ∈α←β

W̃ξ,

and Σ̃G
β =

∑

α∈G

ẼG
α S̃G

α,β.

(4.22)

Note that
[
ẼG

α

]
ζ=0

= EG
α etc., while the mean escape time can now be written as

T G
β =

[
dΣ̃G

β

dζ

]

ζ=0

. (4.23)

In the remaining sections we show how to calculate the pathway probabilities, Pξ,

exactly, along with pathway averages, such as the waiting time. Chain graphs are

treated in Section 4.2 and the results are generalised to arbitrary graphs in Section 4.3.
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4.2 Chain Graphs

A general account of the problem of the first passage time in chemical physics was given

by Weiss as early as 1965 [212]. In Reference [212] he summarised various techniques

for solving such problems to date, and gave a general formula for moments of the first

passage time in terms of the Green’s function of the Fokker-Plank operator. Explicit

expressions for the mean first passage times in terms of the basic transition probabilities

for the case of a one-dimensional random walk were obtained by Ledermann and Reuter

in 1954 [213], Karlin and MacGregor in 1957 [214], Weiss in 1965 [212], Gardiner in

1985 [215], Van den Broeck in 1988 [216], Le Doussal in 1989 [217], Murthy and Kehr

and Matan and Havlin in 1989-1990 [211, 218, 219], Raykin in 1992 [210], Bar-Haim and

Klafter in 1998 [203], Pury and Cáceres in 2003 [220], and Slutsky, Kardar and Mirny

in 2004 [221, 222]. The one-dimensional random walk is therefore a very well researched

topic, both in the field of probability and its physical and chemical applications. The

results presented in this section differ in the manner of presentation.

A random walk in a discrete state space S, where all the states can be arranged

on a linear chain in such a way that Pi,j = 0 for all |i − j| > 1, is called a one-

dimensional or simple random walk (SRW). The SRW model attracts a lot of attention

because of its rich behaviour and mathematical tractability. A well known example of

its complexity is the anomalous diffusion law discovered by Sinai [223]. He showed that

there is a dramatic slowing down of an ordinary power law diffusion (RMS displacement

is proportional to (log t)2 instead of t1/2) if a random walker at each site i experiences a

random bias field Bi = Pi,i+1 − Pi,i−1. Stanley and Havlin generalised the Sinai model

by introducing long-range correlations between the bias fields on each site and showed

that the SRW can span a range of diffusive properties [224].

Although one-dimensional transport is rarely found on the macroscopic scale at

a microscopic level there are several examples, such as kinesin motion along micro-

tubules [225, 226], or DNA translocation through a nanopore [227, 228], so the SRW

is interesting not only from a theoretical standpoint. There is a number of models

that build upon the SRW that have exciting applications, examples being the SRW

walk with branching and annihilation [229], and the SRW in the presence of random

trappings [230]. Techniques developed for the SRW were applied to study more com-
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1 2 3 N

Figure 4.2: Chain graph of length N , depicted as the subgraph of a larger graph. Visible sink

nodes are shaded. Double-headed arrows represent pairs of directed edges.

plex cases, such as, for example, multistage transport in liquids [231], random walks on

fractals [232, 233], even-visiting random walks [234], self-avoiding random walks [235],

random walks on percolation clusters [236, 237], and random walks on simple regular

lattices [238, 239] and superlattices [240].

A presentation that discusses SRW first-passage probabilities in detail sufficient for

our applications is that of Raykin [210]. He considered pathway ensembles explicitly

and obtained the generating functions for the occupation probabilities of any lattice

site for infinite, half-infinite and finite one-dimensional lattices with the random walker

starting from an arbitrary lattice site. As we discuss below, these results have a direct

application to the evaluation of the DPS rate constants augmented with recrossings.

We have derived equivalent expressions for the first-passage probabilities independently,

considering the finite rather than the infinite case, which we discuss in terms of chain

digraphs below.

We define a chain as a digraph CN = (V,E) with N nodes and 2(N−1) edges, where

V = {v1, v2, . . . , vN} and E = {e1,2, e2,1, e2,3, e3,2, . . . , eN−2,N−1, eN−1,N−2}. Adjacent

nodes in the numbering scheme are connected via two oppositely directed edges, and

these are the only connections. A transition probability Pα,β is associated with every

edge eα,β , as described in Section 4.1.1. An N -node chain is depicted in Figure 4.2 as

a subgraph of another graph. The total probability of escape from the chain via node

N if started from node 1 is of interest because it has previously been used to associate
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contributions to the total rate constant from unique paths in DPS studies [8, 9]. We

can restrict the sampling to paths without recrossings between intermediate minima if

we perform the corresponding recrossing sums explicitly [8].

We denote a pathway in CN by the ordered sequence of node indices. The length of

a pathway is the number of edges traversed. For example, the pathway 1, 2, 1, 2, 3, 2, 3

has length 6, starts at node 1 and finishes at node 3. The indices of the intermediate

nodes 2, 1, 2, 3, 2 are given in the order in which they are visited. The product of

branching probabilities associated with all edges in a path was defined above as Wξ.

For example, the product for the above pathway is P3,2P2,3P3,2P2,1P1,2P2,1, which we

can abbreviate as W3,2,3,2,1,2,1. For a chain graph CN , which is a subgraph of G, we

also define the set of indices of nodes in G that are adjacent to nodes in CN but not

members of CN as Adj[CN ]. These nodes will be considered as sinks if we are interested

in escape from CN .

Analytical results for C3 are easily derived:

SC3
1,1 =

∞∑

n=0

(
W1,2,1

∞∑

m=0

(W2,3,2)
m

)n

=
1−W2,3,2

1−W1,2,1 −W2,3,2
,

SC3
2,1 =

∞∑

n=0

(W2,3,2)
n P2,1SC3

1,1 =
P2,1

1−W1,2,1 −W2,3,2
,

SC3
3,1 = P3,2

∞∑

n=0

(W2,3,2)
n P2,1SC3

1,1 =
W3,2,1

1−W1,2,1 −W2,3,2
,

SC3
2,2 =

∞∑

n=0

(W1,2,1 +W2,3,2)
n =

1

1−W1,2,1 −W2,3,2
,

SC3
3,2 = P3,2SC3

2,2 =
P3,2

1−W1,2,1 −W2,3,2
.

(4.24)

These sums converge if the cardinality of the set Adj[C3] is greater than zero. To prove

this result consider a factor, f , of the form

f = Pα,βPβ,α

∞∑

m=0

(Pβ,γPγ,β)m, (4.25)

and assume that the branching probabilities are all non-zero, and that there is at least

one additional escape route from α, β or γ. We know that Pβ,γPγ,β < Pγ,β < 1

because Pα,β + Pγ,β 6 1 and Pα,β 6= 0. Hence f = Pα,βPβ,α/(1 − Pβ,γPγ,β). However,

Pα,βPβ,α + Pβ,γPγ,β 6 Pα,β + Pγ,β 6 1, and equality is only possible if Pβ,α = Pβ,γ =
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Pα,β +Pγ,β = 1, which contradicts the assumption of an additional escape route. Hence

Pα,βPβ,α < 1 − Pβ,γPγ,β and f < 1. The pathway sums SC3
1,2, SC3

1,3, SC3
2,3 and SC3

3,3

can be obtained from Equation 4.24 by permuting the indices. The last two sums in

Equation 4.24 are particularly instructive: the n’th term in the sum for SC3
2,2 and the

n’th term in the sum for SC3
3,2 are the contributions from pathways of length 2n and

2n + 1, respectively.

The pathway sums SCN

α,β can be derived for a general chain graph CN in terms of

recursion relations, as shown in Appendix C. The validity of our results for CN was

verified numerically using the matrix multiplication method described in Reference [8].

For a chain of length N we construct an N ×N transition probability matrix P with

elements

P =




0 P1,2 0 . . .

P2,1 0 P2,3 . . .

0 P3,2 0
...

...
. . .




. (4.26)

The matrix form of the system of Chapman-Kolmogorov equations [187] for homoge-

neous discrete-time Markov chains [123, 187] allows us to obtain the n-step transition

probability matrix recursively as

P(n) = PP(n − 1) = Pn. (4.27)

SCN

α,β can then be computed as

SCN

α,β =
M∑

n=1

[Pn]α,β , (4.28)

where the number of matrix multiplications, M , is adjusted dynamically depending on

the convergence properties of the above sum. We note that sink nodes are excluded

when constructing P and
∑

j Pj,i can be less than unity.

For chains a sparse-optimised matrix multiplication method for SCN

α,β scales asO(NM),

and may suffer from convergence and numerical precision problems for larger values of

N and branching probabilities that are close to zero or unity [8]. The summation

method presented in this section can be implemented to scale as O(N) with constant

memory requirements (Algorithm B.1). It therefore constitutes a faster, more robust
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Figure 4.3: CPU time needed to calculate the total transition probabilities for a chain of

length N . The data is shown for a sparse-optimised matrix multiplication (SMM) method

(blue) and a sparse-optimised version of Algorithm B.1 (red). Terminal nodes of each chain

were connected to a sink, one of the terminal nodes was chosen to be the source. All the

branching probabilities were set to 0.5. Each SMM calculation was terminated when 1.0−ΣCN

0

was less than 10−5. The inset shows the number of matrix multiplications, M , as a function of

chain length. Note the log10 scale on the horizontal axes.

and more precise alternative to the matrix multiplication method when applied to chain

graph topologies (Figure 4.3).

Mean escape times for C3 are readily obtained from the results in Equation 4.24 by

applying the method outlined in Section 4.1.5:

T C3
1 =

τ1(1−W2,3,2) + τ2P2,1 + τ3W3,2,1

1−W1,2,1 −W2,3,2
,

T C3
2 =

τ1P1,2 + τ2 + τ3P3,2

1−W1,2,1 −W2,3,2
,

(4.29)

and T C3
3 can be obtained from T C3

1 by permuting the subscripts 1 and 3.

The mean escape time from the CN graph if started from node β can be calculated

recursively using the results of Appendix D and Section 4.1.5 or by resorting to a

first-step analysis [241].
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1

2

3

α β

Figure 4.4: Complete graphs K2 and K3, depicted as the subgraphs of a larger graph. Visible

sink nodes are shaded.

4.3 Complete Graphs

In a complete digraph each pair of nodes is connected by two oppositely directed

edges [155]. The complete graph with N graph nodes is denoted KN = (V,E), and

has N nodes and N(N −1) edges, remembering that we have two edges per connection

(Figure 4.4). Due to the complete connectivity we need only consider two cases: when

the starting and finishing nodes are the same and when they are distinct. We employ

complete graphs for the purposes of generality. An arbitrary graph GN is a subgraph

of KN with transition probabilities for non-existent edges set to zero. All the results

in this section are therefore equally applicable to arbitrary graphs.

The complete graph K2 will not be considered here as it is topologically identical to

the graph C2. The difference between the K3 and C3 graphs is the existence of edges

that connect nodes 1 and 3. Pathways confined to K3 can therefore contain cycles, and

for a given path length they are significantly more numerous (Figure 4.5). The SK3
α,β
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Figure 4.5: The growth of the number of pathways with the pathway length for K3 and C3.

The starting node is chosen arbitrarily for K3 while for C3 the we start at one of the terminal

nodes. Any node adjacent to K3 or C3 is a considered to be a sink and for simplicity we consider

only one escape route from every node. Note the log10 scale on the vertical axis.

can again be derived analytically for this graph:

SK3
1,1 =

∞∑

n=0

(
(W1,2,1 +W1,3,1 +W1,2,3,1 +W1,3,2,1)

∞∑

m=0

(W2,3,2)
m

)n

=
1−W2,3,2

1−W1,2,1 −W2,3,2 −W1,3,1 −W1,2,3,1 −W1,3,2,1
,

SK3
2,1 =

∞∑

n=0

(W2,3,2)
n (P2,1 +W2,3,1)SK3

1,1

=
P2,1 +W2,3,1

1−W1,2,1 −W2,3,2 −W1,3,1 −W1,2,3,1 −W1,3,2,1
.

(4.30)

The results for any other possibility can be obtained by permuting the node indices

appropriately.

The pathway sums SKN

α,β for larger complete graphs can be obtained by recursion.

For SKN

N,N any path leaving from and returning to N can be broken down into a step

out of N to any i < N , all possible paths between i and j < N − 1 within KN−1, and

finally a step back to N from j. All such paths can be combined together in any order,
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so we have a multinomial distribution [242]:

SKN

N,N =

∞∑

n=0




N−1∑

i=1




N−1∑

j=1

(
PN,jSKN−1

j,i Pi,N

)





n

=


1−

N−1∑

i=1

N−1∑

j=1

PN,jSKN−1

j,i Pi,N



−1

.

(4.31)

To evaluate SKN

1,N we break down the sum into all paths that depart from and return

to N , followed by all paths that leave node N and reach node 1 without returning to

N . The first contribution corresponds to a factor of SKN

N,N , and the second produces a

factor Pi,NSKN−1

1,i for every i < N :

SKN

1,N = SKN

N,N

N−1∑

i=1

SKN−1

1,i Pi,N , (4.32)

where SK1
1,1 is defined to be unity. Any other SKN

α,β can be obtained by a permutation of

node labels.

Algorithm B.2 provides an example implementation of the above formulae opti-

mised for incomplete graphs. The running time of Algorithm B.2 depends strongly on

the graph density. (A digraph in which the number of edges is close to the maximum

value of N(N − 1) is termed a dense digraph [202].) For KN the algorithm runs in

O(N2N ) time, while for an arbitrary graph it scales as O(d2N ), where d is the average

degree of the nodes. For chain graphs the algorithm runs in O(N) time and therefore

constitutes a recursive-function-based alternative to Algorithm B.1 with linear mem-

ory requirements. For complete graphs an alternative implementation with O((N !)2)

scaling is also possible.

Although the scaling of the above algorithm with N may appear disastrous, it does

in fact run faster than standard KMC and MM approaches for graphs where the escape

probabilities are several orders of magnitude smaller than the transition probabilities

(Algorithm B.2). Otherwise, for anything but moderately branched chain graphs, Al-

gorithm B.2 is significantly more expensive. However, the graph-transformation-based

method presented in Section 4.4 yields both the pathway sums and the mean escape

times for a complete graph KN in O(N3) time, and is the fastest approach that we

have found.
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Figure 4.6: Mean escape time from K3 as a function of the escape probability E . The

transition probabilities for the K3 graph are parametrised by E for simplicity: Pi,j = (1−E)/2

for all i, j ∈ {1, 2, 3} and E1 = E2 = E3 = E . Kinetic Monte Carlo data (triangles) was obtained

by averaging over 100 trajectories for each of 33 parameterisations. The solid line is the exact

solution obtained using Equation 4.33. The units of T K3 are arbitrary. Note the log10 scale on

the vertical axis.

Mean escape times for K3 are readily obtained from the results in Equation 4.30

by applying the method outlined in Section 4.1.5:

T K3
1 =

τ1(1−W2,3,2) + τ2(P2,1 +W2,3,1) + τ3(P3,1 +W3,2,1)

1−W1,2,1 −W2,3,2 −W3,1,3 −W1,2,3,1 −W1,3,2,1
. (4.33)

We have verified this result analytically using first-step analysis and numerically for

various values of the parameters τi and Pα,β . and obtained quantitative agreement (see

Figure 4.6). Figure 4.7 demonstrates how the advantage of exact summation over KMC

and MM becomes more pronounced as the escape probabilities become smaller.

4.4 Graph Transformation Method

The problem of calculation of the properties of a random walk on irregular networks was

addressed previously by Goldhirsch and Gefen [208, 209]. They described a generating-

function-based method where an ensemble of pathways is partitioned into ‘basic walks’.

A walk was defined as a set of paths that satisfies a certain restriction. As the probabil-
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Figure 4.7: The computational cost of the kinetic Monte Carlo and matrix multiplication

methods as a function of escape probability for K3 (see caption to Figure 4.6 for the definition

of E). M is the number of matrix multiplications required to converge the value of the total

probability of getting from node 1 to nodes 1, 2 and 3: the calculation was terminated when

the change in the total probability between iterations was less than 10−3. The number of

matrix multiplications M and the average trajectory length 〈l〉 can be used as a measure

of the computational cost of the matrix multiplication and kinetic Monte Carlo approaches,

respectively. The computational requirements of the exact summation method are independent

of E . Note the log10 scale on the vertical axis.

ity generating functions corresponding to these basic walks multiply, the properties of

a network as a whole can be inferred given knowledge of the generating functions corre-

sponding to these basic walks. The method was applied to a chain, a loopless regularly

branched chain and a chain containing a single loop. To the best of our knowledge

only one [243] out of the 30 papers [209–211, 219–222, 240, 243–264] that cite the work

of Goldhirsch and Gefen [208] is an application, perhaps due to the complexity of the

method.

Here we present a graph transformation (GT) approach for calculating the pathway

sums and the mean escape times for KN . In general, it is applicable to arbitrary

digraphs, but the best performance is achieved when the graph in question is dense.

The algorithm discussed in this section will be referred to as DGT (D for dense). A
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sparse-optimised version of the GT method (SGT) will be discussed in Section 4.5.

The GT approach is similar in spirit to the ideas that lie behind the mean value

analysis and aggregation/disaggregation techniques commonly used in the performance

and reliability evaluation of queueing networks [187, 265–267]. It is also loosely related

to dynamic graph algorithms [268–271], which are used when a property is calculated

on a graph subject to dynamic changes, such as deletions and insertions of nodes and

edges. The main idea is to progressively remove nodes from a graph whilst leaving

the average properties of interest unchanged. For example, suppose we wish to remove

node x from graph G to obtain a new graph G′. Here we assume that x is neither

source nor sink. Before node x can be removed the property of interest is averaged

over all the pathways that include the edges between nodes x and i ∈ Adj[x]. The

averaging is performed separately for every node i. Next, we will use the waiting time

as an example of such a property and show that the mean first passage time in the

original and transformed graphs is the same.

The theory is an extension of the results used to perform jumps to second neighbours

in previous KMC simulations [8, 272]. Consider KMC trajectories that arrive at node

i, which is adjacent to x. We wish to step directly from i to any node in the set of

nodes Γ that are adjacent to i or x, excluding these two nodes themselves. To ensure

that the mean first-passage times from sources to sinks calculated in G and G′ are the

same we must define new branching probabilities, P ′γ,i from i to all γ ∈ Γ, along with a

new waiting time for escape from i, τ ′i . Here, τ ′i corresponds to the mean waiting time

for escape from i to any γ ∈ Γ, while the modified branching probabilities subsume all

the possible recrossings involving node x that could occur in G before a transition to a

node in Γ. Hence the new branching probabilities are:

P ′γ,i = (Pγ,xPx,i + Pγ,i)

∞∑

m=0

(Pi,xPx,i)
m = (Pγ,xPx,i + Pγ,i)/(1 − Pi,xPx,i). (4.34)

This formula can also be applied if either Pγ,i or Pγ,x vanishes.

It is easy to show that the new branching probabilities are normalised:

∑

γ∈Γ

Pγ,xPx,i + Pγ,i

1− Pi,xPx,i
=

(1− Pi,x)Px,i + (1− Px,i)

1− Pi,xPx,i
= 1. (4.35)
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To calculate τ ′i we use the method of Section 4.1.4:

τ ′i =


 d

dζ

∑

γ∈Γ

Pγ,xPx,ie
ζ(τx+τi) + Pγ,ie

ζτi

1− Pi,xPx,ieζ(τx+τi)




ζ=0

=
τi + Px,iτx

1− Pi,xPx,i
. (4.36)

The modified branching probabilities and waiting times could be used in a KMC sim-

ulation based upon graph G′. Here we continue to use the notation of Section 4.1.4,

where sinks correspond to nodes a ∈ A and sources to nodes in b ∈ B, and G contains

all the nodes in G expect for the A set, as before. Since the modified branching prob-

abilities, P ′γ,i, in G′ subsume the sums over all path paths from i to γ that involve x

we would expect the sink probability, ΣG
a,b, of a trajectory starting at b ending at sink

a, to be conserved. However, since each trajectory exiting from γ ∈ Γ acquires a time

increment equal to the average value, τ ′i , the mean first-passage times to individual

sinks, T G
a,b, are not conserved in G′ (unless there is a single sink). Nevertheless, the

overall mean first-passage time to A is conserved, i.e.
∑

a∈A T G′

a,b = T G′

b = T G
b . To

prove these results more formally within the framework of complete sums consider the

effect of removing node x on trajectories reaching node i ∈ Adj[x] from a source node

b. The sink probability for a particular sink a is

ΣG
a,b =

∑

ξ∈a←b

Wξ

=
∑

ξ1∈i←b

Wξ1

∑

γ∈Γ

(Pγ,i + Px,iPγ,x)

∞∑

m=0

(Pi,xPx,i)
m

∑

ξ2∈a←γ

Wξ2

=
∑

ξ1∈i←b

Wξ1

∑

γ∈Γ

P ′γ,i

∑

ξ2∈a←γ

Wξ2,

(4.37)

and similarly for any other node adjacent to x. Hence the transformation preserves the

individual sink probabilities for any source.

Now consider the effect of removing node x on the mean first-passage time from
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source b to sink a, T G′

a,b , using the approach of Section 4.1.4.

T G′

a,b =


 d

dζ

∑

ξ1∈i←b

W̃ξ1

∑

γ∈Γ

P̃ ′γ,i

∑

ξ2∈a←γ

W̃ξ2




ζ=0

=
∑

ξ1∈i←b

[
dW̃ξ1

dζ

]

ζ=0

∑

γ∈Γ

P ′γ,i

∑

ξ2∈a←γ

Wξ2

+
∑

ξ1∈i←b

Wξ1

∑

γ∈Γ

[
dP̃ ′γ,i

dζ

]

ζ=0

∑

ξ2∈a←γ

Wξ2

+
∑

ξ1∈i←b

Wξ1

∑

γ∈Γ

P ′γ,i

∑

ξ2∈a←γ

[
dW̃ξ2

dζ

]

ζ=0

,

(4.38)

where the tildes indicate that every branching probability Pα,β is replaced by Pα,βeξτβ ,

as above. The first and last terms are unchanged from graph G in this construction,

but the middle term,

∑

ξ1∈i←b

Wξ1

∑

γ∈Γ

[
dP̃ ′γ,i

dζ

]

ζ=0

∑

ξ2∈a←γ

Wξ2

=
∑

ξ1∈i←b

Wξ1

∑

γ∈Γ

Pγ,xPx,i(τi + τx) + Pγ,i(τi + Pi,xPx,iτx)

(1− Pi,xPx,i)2

∑

ξ2∈a←γ

Wξ2 ,

(4.39)

is different (unless there is only one sink). However, if we sum over sinks then

∑

a∈A

∑

ξ2∈a←γ

Wξ2 = 1 (4.40)

for all γ, and we can now simplify the sum over γ as

∑

γ∈Γ

Pγ,xPx,i(τi + τx) + Pγ,i(τi + Pi,xPx,iτx)

(1− Pi,xPx,i)2
= τ ′i =

∑

γ∈Γ

P ′γ,iτ
′
i . (4.41)

The same argument can be applied whenever a trajectory reaches a node adjacent to

x, so that T G
b = T G′

b , as required.

The above procedure extends the BKL approach [190] to exclude not only the

transitions from the current state into itself but also transitions involving an adjacent

node x. Alternatively, this method could be viewed as a coarse-graining of the Markov

chain. Such coarse-graining is acceptable if the property of interest is the average of

the distribution of times rather than the distribution of times itself. In our simulations

the average is the only property of interest. In cases when the distribution itself is
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sought, the approach described here may still be useful and could be the first step in

the analysis of the distribution of escape times, as it yields the exact average of the

distribution.

The transformation is illustrated in Figure 4.8 for the case of a single source.

Figure 4.8 (a) displays the original graph and its parametrisation. During the first iter-

ation of the algorithm node 2 is removed to yield the graph depicted in Figure 4.8 (b).

This change reduces the dimensionality of the original graph, as the new graph con-

tains one node and three edges fewer. The result of the second, and final, iteration

of the algorithm is a graph that contains source and sink nodes only, with the correct

transition probabilities and mean waiting time [Figure 4.8 (c)].

We now describe algorithms to implement the above approach and calculate mean

escape times from complete graphs with multiple sources and sinks. Listings for some

of the algorithms discussed here are given in Appendix B. We follow the notation of

Section 4.1.4 and consider a digraph GN consisting of NB source nodes, NA sink nodes,

and NI intervening nodes. GN therefore contains the subgraph GNI+NB
.

The result of the transformation of a graph with a single source b and NA sinks

using Algorithm B.3 is the mean escape time T GNI+1

b and NA pathway probabilities

Pξ, ξ ∈ A ← b. Solving a problem with NB sources is equivalent to solving NB single

source problems. For example, if there are two sources b1 and b2 we first solve a problem

where only node b1 is set to be the source to obtain T GNI+NB

b1
and the pathway sums

from b1 to every sink node a ∈ A. The same procedure is then followed for b2.

The form of the transition probability matrix P is illustrated below at three stages:

first for the original graph, then at the stage when all the intervening nodes have been

removed (line 16 in Algorithm B.3), and finally at the end of the procedure:




0 A← I A← B

0 I ⇆ I I ← B

0 B ← I B ⇆ B


→




0 0 A← B

0 0 0

0 0 B ⇆ B


→




0 0 A← B

0 0 0

0 0 0


 , (4.42)

Each matrix is split into blocks that specify the transitions between the nodes of a

particular type, as labelled. Upon termination, every element in the top right block of

matrix P is non-zero.

Algorithm B.3 uses the adjacency matrix representation of graph GN , for which the
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2

3

3′

α

α

α

β

β

β

γ

γ

γ

(a)

P2,1, P3,1, Pα,1, P1,2, P3,2, Pβ,2,

P1,3, P2,3, Pγ,3, τ1, τ2, τ3.

(b)

Pα,1′ =
Pα,1

1− P1,2,1
, Pβ,1′ =

Pβ,2P2,1

1− P1,2,1
,

P3′,1′ =
P3,1 + P3,2,1

1− P1,2,1
, P1′,3′ =

P1,3 + P1,2,3

1− P2,3,2
,

Pβ,3′ =
Pβ,2P2,3

1− P2,3,2
, Pγ,3′ =

Pγ,3

1− P2,3,2
,

τ1′ =
τ1 + τ2P2,1

1− P1,2,1
, τ3′ =

τ3 + τ2P2,3

1− P2,3,2
.

(c)

Pα,1′′ = Pα,1SK3
1,1 , Pβ,1′′ = Pβ,2SK3

2,1 ,

Pγ,1′′ = Pγ,3SK3
3,1 , τ1′′ = τK3

1 .

Figure 4.8: The graph transformation

algorithm of Section 4.4 at work. (a)

A digraph with 6 nodes and 9 edges.

The source node is node 1 (white), the

sinks are nodes α, β and γ (shaded),

and the intermediate nodes are 2 and

3 (black). The waiting times and tran-

sition probabilities that parametrise the

graph are given below the diagram. (b)

Node 2 and all its incoming and out-

going edges are deleted from the graph

depicted in (a). Two edges β ← 1 and

β ← 3 are added. The parameters for

this new graph are denoted by primes

and expressed in terms of the param-

eters for the original graph. (c) Node

3 is now disconnected as well. The re-

sulting graph is composed of source and

sink nodes only. The total probability

and waiting times coincide with these of

K3, as expected. The new parameters

are denoted by a double prime.
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average of the distribution of mean first passage times is to be obtained. For efficiency,

when constructing the transition probability matrix P we order the nodes with the sink

nodes first and the source nodes last. Algorithm B.3 is composed of two parts. The

first part (lines 1-16) iteratively removes all the intermediate nodes from graph GN to

yield a graph that is composed of sink nodes and source nodes only. The second part

(lines 17-34) disconnects the source nodes from each other to produce a graph with

NA +NB nodes and (NA +NB)2 directed edges connecting each source with every sink.

Lines 13-15 are not required for obtaining the correct answer, but the final transition

probability matrix looks neater.

The computational complexity of lines 1-16 of Algorithm B.3 is O(N3
I + N2

I NB +

N2
I NA + NIN

2
B + NINBNA). The second part of Algorithm B.3 (lines 17-34) scales

as O(N3
B + N2

BNA). The total complexity for the case of a single source and for the

case when there are no intermediate nodes is O(N3
I + N2

I NA) and O(N3
B + N2

BNA),

respectively. The storage requirements of Algorithm B.3 scale as O
(
(NI + NB)2

)
.

We have implemented the algorithm in Fortran 95 and timed it for complete graphs

of different sizes. The results presented in Figure 4.9 confirm the overall cubic scaling.

The program is GPL-licensed [273] and available online [274]. These and other bench-

marks presented in this chapter were obtained for a single Intel R© Pentium R© 4 3.00GHz

512 Kb cache processor running under the Debian GNU/Linux operating system [275].

The code was compiled and optimised using the IntelR© Fortran compiler for Linux.

4.5 Applications to Sparse Random Graphs

Algorithm B.3 could easily be adapted to use adjacency-lists-based data structures [154],

resulting in a faster execution and lower storage requirements for sparse graphs. We

have implemented [274] a sparse-optimised version of Algorithm B.3 because the graph

representations of the Markov chains of interest in the present work are sparse [201].

The algorithm for detaching a single intermediate node from an arbitrary graph

stored in a sparse-optimised format is given in Algorithm B.4. Having chosen the

node to be removed, γ, all the neighbours β ∈ Adj[γ] are analysed in turn, as follows.

Lines 3-9 of Algorithm B.4 find node γ in the adjacency list of node β. If β is not a sink,

lines 11-34 are executed to modify the adjacency list of node β: lines 13-14 delete node
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Figure 4.9: CPU time needed to transform a dense graph G2N using Algorithm B.3 as a

function of N . The graph G2N is composed of a KN subgraph and N sink nodes. The data is

shown for six different cases, when there was a single source, and when the sources comprised

20, 40, 60, 90, and 100 percent of the number of nodes in KN , as labelled. The data for the

cases 1 and N was fitted as 5.1× 10−9N3 and 1.5× 10−8N3, respectively (curves not shown).

For case 1 only DetachNode operations were performed while for N — only Disconnect.

γ from the adjacency list of β, while lines 15-30 make all the neighbours α ∈ Adj[γ]⊖β

of node γ the neighbours of β. The symbol ⊖ denotes the union minus the intersection

of two sets, otherwise known as the symmetric difference. If the edge β → α already

existed only the branching probability is changed (line 21). Otherwise, a new edge

is created and the adjacency and branching probability lists are modified accordingly

(line 26 and line 27, respectively). Finally, the branching probabilities of node β are

renormalised (lines 31-33) and the waiting time for node β is increased (line 34).

Algorithm B.4 is invoked iteratively for every node that is neither a source nor a

sink to yield a graph that is composed of source nodes and sink nodes only. Then
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the procedure described in Section 4.4 for disconnection of source nodes (lines 17-34 of

Algorithm B.3) is applied to obtain the mean escape times for every source node. The

sparse-optimised version of the second part of Algorithm B.3 is straightforward and is

therefore omitted here for brevity.

The running time of Algorithm B.4 is O(dc
∑

i∈Adj[c] di), where dk is the degree

of node k. For the case when all the nodes in a graph have approximately the same

degree, d, the complexity is O(d3). Therefore, if there are N intermediate nodes to be

detached and d is of the same order of magnitude as N , the cost of detaching N nodes

is O(N4). The asymptotic bound is worse than that of Algorithm B.3 because of the

searches through adjacency lists (lines 3-9 and lines 19-24). If d is sufficiently small the

algorithm based on adjacency lists is faster.

After each invocation of Algorithm B.4 the number of nodes is always decreased by

one. The number of edges, however, can increase or decrease depending on the in- and

out-degree of the node to be removed and the connectivity of its neighbours. If node

γ is not directly connected to any of the sinks, and the neighbours of node γ are not

connected to each other directly, the total number of edges is increased by dγ(3− dγ).

Therefore, the number of edges decreases (by 2) only when dγ ∈ {1, 2}, and the number

of edges does not change if the degree is 3. For dγ > 3 the number of edges increases

by an amount that grows quadratically with dγ . The actual increase depends on how

many connections already existed between the neighbours of γ.

The order in which the intermediate nodes are detached does not change the final

result and is unimportant if the graph is complete. For sparse graphs, however, the order

can affect the running time significantly. If the degree distribution for successive graphs

is sharp with the same average, d, then the order in which the nodes are removed does

not affect the complexity, which is O(d3N). If the distributions are broad it is helpful to

remove the nodes with smaller degrees first. A Fibonacci heap min-priority queue [276]

was successfully used to achieve this result. The overhead for maintaining a heap is dγ

increase-key operations (of O(log(N)) each) per execution of Algorithm B.4. Fortran

and Python implementations of Algorithm B.4 algorithm are available online [274].

Random graphs provide an ideal testbed for the GT algorithm by providing control

over the graph density. A random graph, RN , is obtained by starting with a set of N
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nodes and adding edges between them at random [33]. In this work we used a random

graph model where each edge is chosen independently with probability 〈d〉 /(N − 1),

where 〈d〉 is the target value for the average degree.

The complexity for removal of N nodes can then be expressed as

O


log(N)

∑

i∈{1,2,3,...,N}


d2

c(i)

∑

j∈Adj[c(i)]

dj,c(i)




 , (4.43)

where dc(i) is the degree of the node, c(i), removed at iteration i, Adj[c(i)] is its ad-

jacency list, and dj,c(i) is the degree of the jth neighbour of that node at iteration i.

The computational cost given in Equation 4.43 is difficult to express in terms of the

parameters of the original graph, as the cost of every cycle depends on the distribution

of degrees, the evolution of which, in turn, is dependent on the connectivity of the

original graph in a non-trivial manner (see Figure 4.10). The storage requirements of

a sparse-optimised version of GT algorithm scale linearly with the number of edges.

To investigate the dependence of the cost of the GT method on the number of

nodes, N , we have tested it on a series of random graphs RN for different values of N

and fixed average degree, 〈d〉. The results for three different values of 〈d〉 are shown in

Figure 4.11. The motivation for choosing 〈d〉 from the interval [3, 5] was the fact that

most of our stationary point databases have average connectivities for the local minima

that fall into this range.

It can be seen from Figure 4.11 that for sparse random graphs RN the cost scales

as O(N4) with a small 〈d〉-dependent prefactor. The dependence of the computational

complexity on 〈d〉 is illustrated in Figure 4.12.

From Figure 4.10 it is apparent that at some point during the execution of the

GT algorithm the graph reaches its maximum possible density. Once the graph is

close to complete it is no longer efficient to employ a sparse-optimised algorithm. The

most efficient approach we have found for sparse graphs is to use the sparse-optimised

GT algorithm until the graph is dense enough, and then switch to Algorithm B.3.

We will refer to this approach as SDGT. The change of data structures constitutes

a negligible fraction of the total execution time. Figure 4.13 depicts the dependence

of the CPU time as a function of the switching parameter Rs. Whenever the ratio

dc(i)/n(i), where the dc(i) is the degree of intermediate node c detached at iteration i,
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Figure 4.10: Evolution of the distribution of degrees for random graphs of different expected

degree, 〈d〉 = 5, 10, 15, as labelled. This is a colour-coded projection of the probability mass

function [277, 278], P (d), of the distribution of degrees as a function of the number of the

detached intermediate nodes, n. The straight line shows P (d, n) for complete graph K1000. All

four graphs contain a single source, 999 intermediate nodes and a single sink. The transfor-

mation was done using sparse-optimised version of Algorithm B.3 with Fibonacci-heap-based

min-priority queue. It can be seen that as the intermediate nodes are detached the density of

the graph that is being transformed grows. The expected degree of the initial graph determines

how soon the maximum density will be reached.

and n(i) is the number of the nodes on a heap at iteration i, is greater than Rs, the

partially transformed graph is converted from the adjacency list format into adjacency

matrix format and the transformation is continued using Algorithm B.3. It can be seen

from Figure 4.10 that for the case of a random graphs with a single sink, a single source

and 999 intermediate nodes the optimal values of Rs lie in the interval [0.07, 0.1].
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Figure 4.11: CPU time needed to transform a sparse random graph R2N using the GT

approach described in Section 4.4 as a function of the number of intermediate nodes, N . R2N is

composed of a single source node, N sink nodes and N−1 intermediate nodes. For each value of

N the data for three different values of the expected degree, 〈d〉 = 3, 4, 5, is shown, as labelled.

Solid lines are analytic fits of the form cN4, where c = 2.3× 10−11, 7.4× 10−11, 1.5× 10−10 for

〈d〉 = 3, 4, 5, respectively. CPU time is in seconds.

4.6 Overlapping Sets of Sources and Sinks

We now return to the digraph representation of a Markov chain that corresponds to the

DPS pathway ensemble discussed in Section 4.1.4. A problem with (partially) overlap-

ping sets of sources and sinks can easily be converted into an equivalent problem where

there is no overlap, and then the GT method discussed in Section 4.4 and Section 4.5

can be applied as normal.

As discussed above, solving a problem with n sources reduces to solving n single-

source problems. We can therefore explain how to deal with a problem of overlapping

sets of sinks and sources for a simple example where there is a single source-sink i and,
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Figure 4.12: CPU time needed to transform a sparse random graph R2N using the GT

approach as a function of the expected degree, 〈d〉. The data is shown for three graphs with

N = 500, 750 and 1000, as labelled. R2N is composed of a single source node, N sink nodes

and N − 1 intermediate nodes.

optionally, a number of sink nodes.

First, a new node i′ is added to the set of sinks and its adjacency lists are initialised

to AdjOut[i′] = ∅ and AdjIn[i′] = AdjIn[i]. Then, for every node j ∈ AdjOut[i] we

update its waiting time as τj = τj + τi and add node j to the set of sources with

probabilistic weight initialised to Pj,iWi, where Wi is the original probabilistic weight

of source i (the probability of choosing source i from the set of sources). Afterwards,

the node i is deleted.
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Figure 4.13: CPU time as a function of switching ratio Rs shown for random graphs of

different expected degree, 〈d〉 = 5, 10, 15, as labelled. All three graphs contain a single source,

999 intermediate nodes and a single sink. The transformation was performed using the sparse-

optimised version of Algorithm B.3 until the the ratio dc(i)/n(i) became greater than Rs. Then a

partially transformed graph was converted into adjacency matrix format and the transformation

was continued with Algorithm B.3. The optimal value of Rs lies in the interval [0.07, 0.1]. Note

the log10 scale on both axes.

4.7 Applications to Lennard-Jones Clusters

4.7.1 Oh ↔ Ih Isomerisation of LJ38

We have applied the GT method to study the temperature dependence of the rate

of Oh ↔ Ih interconversion of 38-atom Lennard-Jones cluster. The PES sample was

taken from a previous study [8] and contained 1740 minima and 2072 transition states.

Only geometrically distinct structures were considered when generating this sample

because this way the dimensionality of the problem is reduced approximately by a

factor of 2N !/h, where h is the order of the point group. Initial and final states in

this sample roughly correspond to icosahedral-like and octahedral-like structures on

the PES of this cluster. The assignment was made in Reference [8] by solving master

equation numerically to find the eigenvector that corresponds to the smallest non-

zero eigenvalue. As simple two-state dynamics are associated with exponential rise
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and decay of occupation probabilities there must exist a time scale on which all the

exponential contributions to the solution of the master equation decay to zero except

for the slowest [9]. The sign of the components of the eigenvector corresponding to the

slowest mode was used to classify the minima as Ih or Oh in character [8].

The above sample was pruned to ensure that every minimum is reachable from any

other minimum to create a digraph representation that contained 759 nodes including

43 source nodes and 5 sink nodes, and 2639 edges. The minimal, average and maxi-

mal degree for this graph were 2, 3.8 and 84, respectively, and the graph density was

4.6 × 10−3. We have used the SDGT algorithm with the switching ratio set to 0.08 to

transform this graph for several values of temperature. In each of these calculations

622 out of 711 intermediate nodes were detached using SGT, and the remaining 89

intermediate nodes were detached using the GT algorithm optimised for dense graphs

(DGT).

An Arrhenius plot depicting the dependence of the rate constant on temperature

is shown in Figure 4.14 (a). The running time of SDGT algorithm was 1.8× 10−2

seconds [this value was obtained by averaging over 10 runs and was the same for each

SDGT run in Figure 4.14 (a)]. For comparison, the timings obtained using the SGT

and DGT algorithms for the same problem were 2.0× 10−2 and 89.0 × 10−2 seconds,

respectively. None of the 43 total escape probabilities (one for every source) deviated

from unity by more than 10−5 for temperatures above T = 0.07 (reduced units). For

lower temperatures the probability was not conserved due to numerical imprecision.

The data obtained using SDGT method is compared with results from KMC sim-

ulation, which require increasingly more CPU time as the temperature is lowered.

Figure 4.14 also shows the data for KMC simulations at temperatures 0.14, 0.15, 0.16,

0.17 and 0.18. Each KMC simulation consisted of the generation of an ensemble of

1000 KMC trajectories from which the averages were computed. The cost of each

KMC calculation is proportional to the average trajectory length, which is depicted in

Figure 4.14 (b) as a function of the inverse temperature. The CPU timings for each

of these calculations were (in the order of increasing temperature, averaged over five

randomly seeded KMC simulations): 125, 40, 18, 12, and 7 seconds. It can be seen that

using GT method we were able to obtain kinetic data for a wider range of temperatures
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Figure 4.14: (a) Arrhenius plots for the LJ38 cluster. k is the rate constant corresponding

to transitions from icosahedral-like to octahedral-like regions. Green circles represent the data

obtained from 23 SDGT runs at temperatures T ∈ {0.07, 0.075, . . . , 0.18}. The data from five

KMC runs is also shown (red squares). The data shown in blue corresponds to temperatures T ∈
{0.035, 0.04, . . . , 0.065} and was obtained using the SDGT2 method (discussed in Section 4.7.2)

with quadruple precision enabled. In all SDGT runs the total escape probabilities calculated

for every source at the end of the calculation deviated from unity by no more then 10−5. For

this PES sample the lowest temperature for which data was reported in previous works was

T = 0.08. (b) The average KMC trajectory length [data in direct correspondence with KMC

results shown in (a)]. A solid line is used to connect the data points to guide the eye.

and with less computational expense.

4.7.2 Internal Diffusion in LJ55

We have applied the graph transformation method to study the centre-to-surface atom

migration in 55-atom Lennard-Jones cluster. The global potential energy minimum

for LJ55 is a Mackay icosahedron, which exhibits special stability and ‘magic number’

properties [279, 280]. Centre-to-surface and surface-to-centre rates of migration of a

tagged atom for this system were considered in previous work [10]. In Reference [10]
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Figure 4.15: Global minimum of the LJ55 cluster (shown in stereo). The tagged atom can

occupy the central position (green) or one of the two different surface sites (red and blue).

the standard DPS procedure was applied to create and converge an ensemble of paths

linking the structure of the global minimum with the tagged atom occupying the central

position and structures where tagged atom is placed in sites that lie on fivefold and

twofold symmetry axes (Figure 4.15). We have reused this sample in the present work.

The sample contained 9907 minima and 19384 transition states. We excluded tran-

sition states that facilitate degenerate rearrangements from consideration. For minima

interconnected by more than one transition state we added the rate constants in each

direction to calculate the branching probabilities. Four digraph representations were

created with minimum degrees of 1, 2, 3 and 4 via iterative removal of the nodes with

degrees that did not satisfy the requirement. These digraphs will be referred to as

digraphs 1, 2, 3 and 4, respectively. The corresponding parameters are summarised in

Table 4.1. Since the cost of the GT method does not depend on temperature we also

quote CPU timings for the DGT, SGT and SDGT methods for each of these graphs in

the last three columns of Table 4.1. Each digraph contained two source nodes labelled

1 and 2 and a single sink. The sink node corresponds to the global minimum with

the tagged atom in the centre (Figure 4.15). It is noteworthy that the densities of
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Table 4.1: Properties of four digraphs corresponding to the LJ55 PES sample from an internal

diffusion study. |V | is the number of nodes; |E| is the number of directed edges; dmin, 〈d〉 and

dmax are the minimum, average and maximum degrees, respectively; ρ is the graph density,

defined as a ratio of the number of edges to the maximum possible number of edges; r and d

are the graph radius and diameter, defined as the maximum and minimum node eccentricity,

respectively, where the eccentricity of a node v is defined as the maximum distance between v

and any other node. 〈l〉 is the average distance between nodes. The CPU time, t, necessary to

transform each graph using the DGT, SGT and SDGT methods is given in seconds for a single

32-bit Intel R© Pentium R© 4 3.00GHz 512Kb cache processor.

|V | |E| dmin 〈d〉 dmax ρ/10−4 r 〈l〉 d tDGT tSGT tSDGT

9843 34871 1 3.9 983 3.6 10 5.71 20 2346.1 39.6 1.36

6603 28392 2 4.8 983 6.5 9 4.86 17 1016.1 38.9 1.33

2192 14172 3 7.9 873 29.5 4 3.63 8 46.9 5.9 0.49

865 7552 4 1.9 680 101.0 4 3.07 7 3.1 0.8 0.12

the graphs corresponding to both our samples (LJ38 and LJ55) are significantly lower

than the values predicted for a complete sample [115], which makes the use of sparse-

optimised methods even more advantageous. From Table 4.1 it is clear that the SDGT

approach is the fastest, as expected; we will use SDGT for all the rate calculations in

the rest of this section.

For this sample KMC calculations are unfeasible at temperatures lower than about

T = 0.3 (Here T is expressed in the units of ǫ/kB). Already for T = 0.4 the average

KMC trajectory length is 7.5× 106 (value obtained by averaging over 100 trajectories).

In previous work it was therefore necessary to use the DPS formalism, which invokes a

steady-state approximation for the intervening minima, to calculate the rate constant at

temperatures below 0.35 [10]. Here we report results that are in direct correspondence

with the KMC formulation of the problem, for temperatures as low as 0.1.

Figure 4.16 presents Arrhenius plots that we calculated using the SDGT method

for this system. The points in the green dataset are the results from seven SDGT

calculations at temperatures T ∈ {0.3, 0.35, . . . , 0.6} conducted for each of the digraphs.

The total escape probabilities, ΣG
1 and ΣG

2 , calculated for each of the two sources at
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the end of the calculation deviated from unity by no more than 10−5. For higher

temperatures and smaller digraphs the deviation was smaller, being on the order of

10−10 for digraph 4 at T = 0.4, and improving at higher temperatures and/or smaller

graph sizes.

At temperatures lower than 0.3 the probability deviated by more than 10−5 due

to numerical imprecision. This problem was partially caused by the round-off errors

in evaluation of terms 1 − Pα,βPβ,α, which increase when Pα,βPβ,α approaches unity.

These errors can propagate and amplify as the evaluation proceeds. By writing

Pα,β = 1−
∑

γ 6=α

Pγ,β ≡ 1− ǫα,β

and Pβ,α = 1−
∑

γ 6=β

Pγ,α ≡ 1− ǫβ,α,

(4.44)

and then using

1− Pα,βPβ,α = ǫα,β − ǫα,βǫβ,α + ǫβ,α (4.45)

we were able to decrease 1 − ΣG
α by several orders of magnitude at the expense of

doubling the computational cost. The SDGT method with probability denominators

evaluated in this fashion will be referred to as SDGT1.

Terms of the form 1 − Pα,βPβ,α approach zero when nodes α and β become ‘effec-

tively’ (i.e. within available precision) disconnected from the rest of the graph. If this

condition is encountered in the intermediate stages of the calculation it could also mean

that a larger subgraph of the original graph is effectively disconnected. The waiting

time for escape if started from a node that belongs to this subgraph tends to infinity.

If the probability of getting to such a node from any of the source nodes is close to

zero the final answer may still fit into available precision, even though some of the in-

termediate values cannot. Obtaining the final answer in such cases can be problematic

as division-by-zero exceptions may occur.

Another way to alleviate numerical problems at low temperatures is to stop round-

off errors from propagation at early stages by renormalising the branching probabilities

of affected nodes β ∈ Adj[γ] after node γ is detached. The corresponding check that

the updated probabilities of node β add up to unity could be inserted after line 33 of

Algorithm B.4 (see Appendix B), and similarly for Algorithm B.3. A version of SDGT

method with this modification will be referred to as SDGT2.
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Figure 4.16: Arrhenius plots for four digraphs of varying sizes (see Table 4.1) created from a

sample of the PES for the LJ55 cluster. k is the rate constant corresponding to surface-to-centre

migration of a tagged atom. Calculations were conducted at T ∈ {0.3, 0.35, . . . , 0.7} using the

SDGT method (green) and T ∈ {0.1, 0.15, . . . , 0.25} using SDGT2Q (blue). For each of the

digraphs the calculations yielded essentially identical results so data points for only one of them

are shown.

Both SDGT1 and SDGT2 have similarly scaling overheads relative to the SDGT

method. We did not find any evidence for superiority of one scheme over another.

For example, the SDGT calculation performed for digraph 4 at T = 0.2 yielded T G =

T G
1 W1 +T G

2 W2 = 6.4×10−18, and precision was lost as both ΣG
1 and ΣG

2 were less than

10−5. The SDGT1 calculation resulted in T G = 8.7 × 10−22 and ΣG
1 = ΣG

2 = 1.0428,

while the SDGT2 calculation produced T G = 8.4 × 10−22 with ΣG
1 = ΣG

2 = 0.99961.

The CPU time required to transform this graph using our implementations of the

SDGT1 and SDGT2 methods was 0.76 and 0.77 seconds, respectively.

To calculate the rates at temperatures in the interval [0.1, 0.3] reliably we used an

implementation of the SDGT2 method compiled with quadruple precision (SDGT2Q)

(note that the architecture is the same as in other benchmarks, i.e. with 32 bit wide

registers). The points in the blue dataset in Figure 4.16 are the results from 4 SDGT2Q

calculations at temperatures T ∈ {0.10, 0.35, . . . , 0.75}.
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By using SDGT2Q we were also able to improve on the low-temperature results for

LJ38 presented in the previous section. The corresponding data is shown in blue in

Figure 4.14.

4.8 Summary

The most important result of this chapter is probably the graph transformation (GT)

method. The method works with a digraph representation of a Markov chain and can be

used to calculate the first moment of a distribution of the first-passage times, as well as

the total transition probabilities for an arbitrary digraph with sets of sources and sinks

that can overlap. The calculation is performed in a non-iterative and non-stochastic

manner, and the number of operations is independent of the simulation temperature.

We have presented three implementations of the GT algorithm: sparse-optimised

(SGT), dense-optimised (DGT), and hybrid (SDGT), which is a combination of the

first two. The SGT method uses a Fibonacci heap min-priority queue to determine

the order in which the intermediate nodes are detached to achieve slower growth of the

graph density and, consequently, better performance. SDGT is identical to DGT if the

graph is dense. For sparse graphs SDGT performs better then SGT because it switches

to DGT when the density of a graph being transformed approaches the maximum. We

find that for SDGT method performs well both for sparse and dense graphs. The worst

case asymptotic scaling of SDGT is cubic.

We have also suggested two versions of the SDGT method that can be used in

calculations where a greater degree of precision is required. The code that implements

SGT, DGT, SDGT, SDGT1 and SDGT2 methods is available for download [274].

The connection between the DPS and KMC approaches was discussed in terms

of digraph representations of Markov chains. We showed that rate constants obtained

using the KMC or DPS methods can be computed using graph transformation. We have

presented applications to the isomerisation of the LJ38 cluster and the internal diffusion

in the LJ55 cluster. Using the GT method we were able to calculate rate constants at

lower temperatures than was previously possible, and with less computational expense.

We also obtained analytic expressions for the total transition probabilities for ar-

bitrary digraphs in terms of combinatorial sums over pathway ensembles. It is hoped
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that these results will help in further theoretical pursuits, e.g. these aimed at obtain-

ing higher moments of the distribution of the first passage times for arbitrary Markov

chains.

Finally, we showed that the recrossing contribution to the DPS rate constant of a

given discrete pathway can be calculated exactly. We presented a comparison between

a sparse-optimised matrix multiplication method and a sparse-optimised version of

Algorithm B.1 and showed that it is beneficial to use Algorithm B.1 because it is many

orders of magnitude faster, runs in linear time and has constant memory requirements.



Chapter 5

Conclusions

Still round the corner there may wait

A new road or a secret gate,

And though we pass them by today,

Tomorrow we may come this way

And take the hidden paths that run

Towards the Moon or to the Sun.

J. R. R. Tolkien, A walking song

5.1 Summary of Contributions

In this thesis I have tried to improve upon existing double-ended methods for finding

rearrangement pathways as well as methods for extracting kinetic information from

pathway ensembles. The main accomplishments are as follows:

(I) We presented a graph transformation (GT) method, which can be used to cal-

culate the total transition probabilities and mean escape times for arbitrary

digraphs with arbitrary sets of sources and sinks that are allowed to overlap. At

low temperatures the GT method becomes the method of choice, outperforming

kinetic Monte Carlo and matrix multiplication methods.

(II) We have suggested a version of the GT method (SDGT) that can take full ad-

vantage of the sparsity of the problem. Apart from switching to the standard

sparse-optimised adjacency-list-based data structure, the modifications were the
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implementation of Fibonacci-heap-based min-priority queue to ensure that nodes

with smaller degrees are detached first, and an algorithm that monitors the graph

density and switches to the dense-optimised version of the method when it be-

comes computationally cost-effective.

(III) The stability of the NEB method was improved by introducing a portion of

the spring gradient component perpendicular to the path back into the NEB

gradient.

(IV) The efficiency of the DNEB method was improved by eliminating the removal

of the overall rotation and translation and employing a quasi-Newton method

(L-BFGS) for minimisation of the band.

(V) The efficiency and stability of the QVV minimiser was increased by finding the

optimal point in time of quenching the velocity.

(VI) We have devised a method for finding rearrangement pathways between distant

local minima, which is based on the consecutive DNEB searches and uses the

Euclidean distance as a measure of separation in configuration space. Part of this

work that concerned the Dijkstra-based selector was performed in collaboration

with Dr. Joanne M. Carr [167].

(VII) A new cooperativity index, introduced in Chapter 3, enabled us to find a cor-

relation between the cooperativity of an atomic rearrangement and the energy

barrier. We showed that cooperative rearrangements of LJ clusters and the BLJ

liquid have lower energy barriers irrespective of the degree of localisation.

(VIII) We have demonstrated that it is possible to control the overall cooperativity of

the pathway sample, and outlined a technique for sampling cooperative pathways

using single-ended transition state searching methods.

(IX) We have described the edge weight function that allows us to find the path with

the largest DPS non-recrossing rate constant using the Dijkstra algorithm. We

have also described an algorithm for sampling for the fastest paths.

(X) We have devised a method for computing a recrossing contribution to the DPS

rate constant exactly in linear time with constant memory requirements.
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(XI) We have obtained recursive expressions for the total transition probabilities from

an arbitrary digraph by considering the corresponding pathway ensembles.

Because random walk has applications in many areas of sciences, from Brownian mo-

tion [120] and diffusion [121] in physics to dynamics of stock markets in economics [281]

and tumour angiogenesis in medicine [282], we expect methods developed in Chapter 4

to be relevant to a much wider domain.

5.2 Future Research

Avenues for future research based on the results of this thesis may be opened by trying

to answer the following questions:

(I) If a pathway sample that accurately reproduces the kinetics of the complete

pathway ensemble is sought what is the best sampling strategy to use?

(II) Do cooperative rearrangements start to dominate the relaxation processes at

lower temperatures?

(III) What is the relationship between the number of cooperative pathways supported

by a PES and the form of the potential?

(IV) Can cooperative moves improve existing methods for global optimisation and

evolution of kinetic databases?

As a number of alternative double-ended approaches have been developed in the

past few years, such as, for example, the string method [283–287], the growing string

method [109, 288], and a super-linear NEB based on adopted basis Newton-Raphson

minimiser [289], it would be interesting to make a detailed comparison of these methods

on a set of problems we are likely to be solving in the future.

The connection algorithm and the algorithm for sampling the fastest path presented

in Chapter 2 and Appendix E, respectively, are far from optimum because they operate

on evolving databases but use the static Dijkstra algorithm to build the shortest path

tree. When applying these methods to databases larger than these discussed in this

thesis the use of dynamic graph algorithms may be of benefit.
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It would be exciting to see more applications of the GT method that would allow

us to come to a more detailed understanding of its strengths and weaknesses. Compar-

isons with sparse-optimised numerical approaches for solving the master equation and

iterative solvers based on first-step analysis are also desirable.

From a theoretical point of view, it would be interesting to extend the approach

of Section 4.3 to obtain higher moments of the escape time distribution function and

maybe even the distribution function itself.

Although the DNEB method and connection algorithm presented in this thesis have

seen a number of successful applications already the scope for further applications and

development is ample. Potential areas include the design of better initial pathway

guessing strategies for proteins, reduction of memory requirements of the connection

algorithm, better understanding of the relationship of the optimal edge weight function

and the form of the potential, and parallelisation of these methods for distributed-

memory computing, to name but a few. Much ongoing work is now focused on attempts

to construct an initial folding pathway for a medium-sized protein, barnase. Prelimi-

nary results showed that further improvements (with emphasis on the large number of

degrees of freedom) to both double-ended and single-ended transition state searching

methods are required to complete this task.

5.3 Outlook

There is a need for future research to address the gap between the force field designers

and the energy landscapes community. Success in the application of many methods

discussed in this thesis is contingent on the potential energy function being continuous

and well-defined. Some of the most promising potential energy functions developed

recently can only be used with methods described here after serious modifications.

Ultimately, our ability to make valid predictions about the properties of any system

is limited by the accuracy of the force field. It is thus hoped that more research will

be performed in the direction of the development of realistic, cheap and friendly force

fields.



Appendix A

Rotamers in the CHARMM19

Force Field

The people may be made to follow a path of action,

but they may not be made to understand it.

Confucius (551 BC - 479 BC)

V
(
r1(j), r2(j), r3(j), . . . , rN (j)

)
is the energy functional that describes a system with

N atoms, where ri(j) is the three-dimensional vector that contains the Cartesian co-

ordinates of atom i for structure j, i.e. ri(j) =
(
Xi(j), Yi(j), Zi(j)

)
, where Xi(j) is

the X coordinate of atom i in structure j, etc. Structure A is fully specified by a set

of coordinates
{
r1(A), r2(A), r3(A), ...rN (A)

}
. Ideally, the energy functional is invari-

ant with respect to any permutations within a subset of atoms of the same element.

For example, if atoms 1 and 2 are both hydrogens, swapping their coordinates around

should not make any difference for the evaluation of energy and its derivatives. This

effectively means that ‘numbering’ or ‘labelling’ of the atoms within such a subset is

completely arbitrary. Swapping the coordinates and relabelling are therefore equivalent

operations.

The CHARMM19 energy functional [4] is capable of describing some of the per-

mutational isomers. While it is not possible to swap two atoms of the same type that

belong to different residues (a rearrangement of this type would involve bond breaking

and is thus impossible to model with CHARMM), rotations of the side chains can map
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an initial structure onto a permutational isomer. Such rotational isomers (rotamers)

can be thought of as structures where symmetry-related atoms are relabelled. For ex-

ample, in the phenylalanine side chain a rotation around a bond CB–CG by 180 degrees

generates a structure that could otherwise be obtained via permutation CD1 ⇔ CD2

followed by CE1 ⇔ CE2 [see Figure A.1(Phe)]. CB, CG, CD1 etc. are CHARMM19

atom types as specified in CHARMM19 topology and parameter files, toph19.inp and

param19.inp.

Landscape searching using the DPS method [8, 10] involves precise identification

of the stationary points, which is best done by comparing their energies and the prin-

cipal components of the inertia tensor. Recently Evans and Wales applied DPS to

met-enkephalin and the B1 domain of protein G [133, 197, 290]. They noted that

permutational isomers of stationary points using the CHARMM19 force field can have

slightly different energies and geometries even if tightly optimised.∗

There are eight amino acids that have side chain rotamers in CHARMM19. The

aromatic rings in tyrosine and phenylalanine have two pairs of carbon-hydrogen united

atoms in the ring that are equivalent, namely, CD1, CD2 and CE1, CE2. Aspartic and

glutamic acids each have a pair of equivalent oxygens — OD1, OD2 and OE1, OE2,

respectively. Ball-and-stick models of Phe, Tyr, Asp and Glu amino acids are shown in

Figure A.1. Asparagine, glutamine and arginine have equivalent hydrogens in amino

groups. Lysine has three equivalent hydrogens in the NH+
3 – group. Asn, Gln, Arg and

Lys amino acids are depicted in Figure A.2. Standard CHARMM19 N- and C-terminal

capping groups ‘Nter’ and ‘Cter’ also have rotational isomers. Finally, methyl groups

in valine and leucine side chains can be swapped without bond breaking. Cter, Nter,

Val and Leu are shown in Figure A.3.

Rotamers of tyrosine, asparagine, glutamine and the C-terminal residue Cter can

have different energies in the CHARMM19 force field. The energy difference can be as

large as 10−3 kcal/mol for tightly optimised structures and is due to the asymmetry in

the definition of the dihedral angle in the case of tyrosine, asparagine and glutamine,

and in the definition of the improper dihedral angle in the case of Cter.

It is easy to demonstrate this effect for tyrosine with a structure for which the axis of

∗The authors mentioned rotation of tyrosine ring system and –COO− groups as well as swapping of

the two –CH3 groups in valine side chains [290].
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Figure A.1: Amino acids that have ring- and carboxylic-based rotameric sidechains. Stereo

ball-and-stick models of CHARMM19 representations of phenylalanine, tyrosine, aspartic and

glutamatic acids are shown. For the description of the atom colour-coding see the caption to

Figure 2.10. Each molecule was optimised using CHARMM19, and has standard Ace and Cbx

capping groups blocking N- and C-termini, respectively. Atoms involved in the definition of

asymmetric torsions are labelled with their respective CHARMM19 atom names.
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Figure A.2: Amino acids that have isomers due to rotation of –NH2 and –NH+
3 groups. Stereo

ball-and-stick models of CHARMM19 representations of asparagine, glutamine, arginine and

lysine are shown. For the description of the atom colour-coding see the caption to Figure 2.10.

Each molecule was optimised using CHARMM19, and has standard Ace and Cbx capping

groups blocking N- and C-termini, respectively. Atoms involved in the definition of asymmetric

torsions are labelled with their respective CHARMM19 atom names.
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Figure A.3: Amino acids that have isomers that are related by an operation of methyl group

swapping. Stereo ball-and-stick models of CHARMM19 representations of valine and leucine

are shown. For the description of the atom colour-coding see the caption to Figure 2.10. Each

molecule was optimised using CHARMM19, and has standard Nter and Cter capping groups

blocking N- and C-termini, respectively. Atoms involved in the definition of asymmetric torsions

are labelled with their respective CHARMM19 atom names.

rotation of the phenyl ring (which passes through atoms CG and CZ) does not coincide

with the torsion axis (which passes through atoms CZ and OH). In this case the angles of

the torsion CE1–CZ–OH–HH in the two rotamers are not complementary, which results

in a slightly different energy. A similar situation is found in asparagine and glutamine

where rotation of aminogroups is described by asymmetric CB–CG–ND2–HD21 and

CG–CD–NE2–HE21 dihedral angles, respectively.

The same asymmetry is present in another tyrosine torsion, CA–CB–CG–CD1, as

well as the CA–CB–CG–CD1 torsion in phenylalanine, the CB–CG–CD–OE1 torsion

in glutamic acid, and the CA–CB–CG–OD1 torsion in aspartic acid, but they are not

noticeable when a standard parameter file is used because the corresponding force

constants are zero.

The improper torsion C–CA–OT2–OT1 is the origin of the energy difference for

the Cter residue [see Figure A.1(Leu)]. In the general case it is difficult to symmetrise

improper torsions in CHARMM19 without changing the form of the energy functional

and/or reparametrisation. Fortunately, when the equilibrium angle is zero the improper

torsion term is a symmetric function of the angle and, provided symmetry-related atoms
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are given in ‘correct’ order, the improper torsion energy and its derivatives will be the

same in both rotamers. Specifically, for improper torsion I–J–K–L, where I is the central

atom and the torsion angle is the angle between the plane defined by atoms I–J–K and

atom L, if the symmetry related atoms are J and K then φ(I–J–K–L)=−φ(I–K–J–L).

While tyrosine improper torsions CG–CD1–CD2–CB and CZ–CE1–CE2–OH, pheny-

lalanine CG–CD1–CD2–CB improper torsion, the CD–OE1–OE2–CG improper torsion

for glutamic acid, and the CG–OD1–OD2–CB improper torsion for aspartic acid are

all symmetrically specified, the Cter’s C–CA–OT2–OT1 improper torsion is not.

The valine and leucine situation is special because if one of the two structures

with side chains that are mirror images of one another is a stationary point the other

one is not. In other words, because the rearrangement where the –C–C(CH3)2 group

undergoes an inversion is not describable by the force field, only one of the two isomers

can exist on the CHARMM19 potential energy surface as a stationary point.

We have fixed the dihedral asymmetries in Asn, Gln, Tyr, Phe, Glu, Asp, Val

and Leu by adding multiple dihedral terms between bonds with similar symmetry-

related positions and halving the corresponding force constants, as was advised by

Prof. Charles L. Brooks III. We also ‘symmetrised’ the Cter improper torsion by chang-

ing the topology for that residue. Patches for toph19.inp, param19.inp, toph19 eef1.inp

and param19 eef1.inp are available online [165].
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Algorithms

Here we adopt a standard notation (pseudocode) for defining algorithms [33, 154].

Assignment of a value α to a variable β is denoted by β ← α. The branching probability

Pα,β is represented as P [α, β] if it is stored in matrix form, and as P [β][α] if it is stored

in the form of adjacency lists.

Algorithm B.1 Calculate the pathway sum SCN

α,β

Require: Chain nodes are numbered 0, 1, 2, . . . , N − 1
Require: 1 < N
Require: α, β ∈ {0, 1, 2, . . . , N − 1}
Require: P [i, j] is the probability of branching from node j to node i

1: if α < β then

2: h← 1; t← N − 2; s← 1
3: else

4: h← N − 2; t← 1; s← −1
5: end if

6: L← 1
7: for all i ∈ {h, h + s, h + 2s, . . . , α} do

8: L← 1/(1 − P [i− s, i]P [i, i − s]L)
9: end for

10: Π← 1
11: for all i ∈ {α + s, α + 2s, α + 3s, . . . , β} do

12: Π← P [i− s, i]LΠ
13: L← 1/(1 − P [i− s, i]P [i, i − s]L)
14: end for

15: R← 1
16: for all i ∈ {t, t− s, t− 2s, . . . , β} do

17: R← 1/(1 − P [i + s, i]P [i, i + s]R)
18: end for

19: return LRΠ/(L− LR + R)
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Algorithm B.2 Calculate the pathway sum SGN

a,b

Require: 1 < N
Require: a, b ∈ {0, 1, 2, . . . , N − 1}
Require: W is a boolean array of size N with every element initially set to True
Require: NW is the number of True elements in array W (initialised to N)
Require: P [i, j] is the probability of branching from node j to node i
Require: AdjIn[i] and AdjOut[i] are the lists of indices of all nodes connected to
node i via incoming and outgoing edges, respectively
Recursive function F (α, β,W,NW )

1: W [β]← False
2: NW ← NW − 1
3: if α = β and NW = 0 then

4: Σ← 1
5: else

6: Σ← 0.0
7: for all i ∈ AdjOut[β] do

8: for all j ∈ AdjIn[β] do

9: if W [i] and W [j] then

10: Σ← Σ + P [β, j]F (j, i,W,NW )P [i, β]
11: end if

12: end for

13: end for

14: Σ← 1/(1 − Σ)
15: if α 6= β then

16: Λ← 0.0
17: for all i ∈ AdjOut[β] do

18: if W[i] then

19: Λ← Λ + F (α, i,W,NW )P (i, β)
20: end if

21: end for

22: Σ← ΣΛ
23: end if

24: end if

25: W [β]← True
26: NW ← NW + 1
27: return Σ
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Algorithm B.3 Calculate the pathway sum SGN

α,β from every source to every sink, and
the mean escape time for every source in a dense graph GN

Require: Nodes are numbered 0, 1, 2, . . . , N − 1
Require: Sink nodes are indexed first, source nodes - last
Require: i is the index of the first intermediate node
Require: s is the index of the first source node
Require: In case there are no intermediate nodes i = s, otherwise i < s
Require: 1 < N
Require: i, s ∈ {0, 1, 2, . . . , N − 1}
Require: τ [α] is the waiting time for node α, α ∈ {i, i + 1, i + 2, . . . , N − 1}
Require: P [i, j] is the probability of branching from node j to node i

1: for all γ ∈ {i, i + 1, i + 2, . . . , s− 1} do

2: for all β ∈ {γ + 1, γ + 2, . . . , N − 1} do

3: if P [γ, β] > 0 then

4: τ [β]← (τ [β] + τ [γ]P [γ, β])/(1 − P [β, γ]P [γ, β])
5: for all α ∈ {0, 1, 2, . . . , N − 1} do

6: if α 6= β and α 6= γ then

7: P [α, β]← (P [α, β] + P [α, γ]P [γ, β])/(1 − P [β, γ]P [γ, β])
8: end if

9: end for

10: P [γ, β]← 0.0
11: end if

12: end for

13: for all α ∈ {0, 1, 2, . . . , N − 1} do

14: P [α, γ]← 0.0
15: end for

16: end for

17: for all α ∈ {s, s + 1, s + 2, . . . , N − 1} do

18: for all β ∈ {s, s + 1, s + 2, . . . , N − 1} do

19: if α 6= β and P [α, β] > 0 then

20: Pα,β ← P [α, β]
21: Pβ,α ← P [β, α]
22: T ← τ [α]
23: τ [α]← (τ [α] + τ [β]Pβ,α)/(1 − Pα,βPβ,α)
24: τ [β]← (τ [β] + TPα,β)/(1 − Pα,βPβ,α)
25: for all γ ∈ {0, 1, 2, . . . , i− 1} ∪ {s, s + 1, s + 2, . . . , N − 1} do

26: T ← P [γ, α]
27: P [γ, α]← (P [γ, α] + P [γ, β]Pβ,α)/(1 − Pα,βPβ,α)
28: P [γ, β]← (P [γ, β] + TPα,β)/(1 − Pα,βPβ,α)
29: end for

30: P [α, β]← 0.0
31: P [β, α]← 0.0
32: end if

33: end for

34: end for
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Algorithm B.4 Detach node γ from an arbitrary graph GN

Require: 1 < N
Require: γ ∈ {0, 1, 2, . . . , N − 1}
Require: τ [i] is the waiting time for node i
Require: Adj[i] is the ordered list of indices of all nodes connected to node i via
outgoing edges

Require: |Adj[i]| is the cardinality of Adj[i]
Require: Adj[i][j] is the index of the jth neighbour of node i
Require: P [i] is the ordered list of probabilities of leaving node i via outgoing
edges, |P [i]| = |Adj[i]|

Require: P [i][j] is the probability of branching from node i to node Adj[i][j]
1: for all βγ ∈ {0, 1, 2, . . . , |Adj[γ]| − 1} do

2: β ← Adj[γ][βγ ]
3: γβ ← −1
4: for all i ∈ {0, 1, 2, . . . , |Adj[β]| − 1} do

5: if Adj[β][i] = γ then

6: γβ ← i
7: break

8: end if

9: end for

10: if not γβ = −1 then

11: Pβ,β ← 1/(1 − P [β][γβ ]P [γ][βγ ])
12: Pβ,γ ← P [β][γβ ]
13: Adj[β]← {Adj[β][0], Adj[β][1], . . . , Adj[β][γβ − 1], Adj[β][γβ + 1], . . . }
14: P [β]← {P [β][0], P [β][1], . . . , P [β][γβ − 1], P [β][γβ + 1], . . . }
15: for all αγ ∈ {0, 1, 2, . . . , |Adj[γ]| − 1} do

16: α← Adj[γ][αγ ]
17: if not α = β then

18: if exists edge β → α then

19: for all i ∈ {0, 1, 2, . . . , |Adj[β]| − 1} do

20: if Adj[β][i] = α then

21: P [β][i]← P [β][i] + Pβ,γP [γ][αγ ]
22: break

23: end if

24: end for

25: else

26: Adj[β]← {α,Adj[β][0], Adj[β][1], Adj[β][2], . . . }
27: P [β]← {Pβ,γP [γ][αγ ], P [β][0], P [β][1], P [β][2], . . . }
28: end if

29: end if

30: end for

31: for all i ∈ {0, 1, 2, . . . , |P [β]| − 1} do

32: P [β][i]← P [β][i]Pβ,β

33: end for

34: τβ ← (τβ + Pβ,γτγ) Pβ,β

35: end if

36: end for



Appendix C

Pathway Sums for Chain

Graphs, SCN
α,β

To obtain the total probability of leaving the chain CN via node α if started from node

β, i.e. ECN
α SCN

α,β , we must calculate the pathway sum SCN

α,β . We start with the case α = β

and obtain SCN

β,β . Consider any path that has reached node N−1. The probability factor

due to all possible N − 1 to N recrossings is simply RN−1 = 1/(1 − PN−1,NPN,N−1).

We need to include this factor every time we reach node N − 1 during recrossings of

N − 2 to N − 1. The corresponding sum becomes

RN−2 =

∞∑

m=0

(PN−2,N−1PN−1,N−2RN−1)
m =

1

1− PN−2,N−1PN−1,N−2RN−1
. (C.1)

Similarly, we can continue summing contributions in this way until we have recross-

ings of β to β + 1, for which the result of the nested summations is Rβ = 1/(1 −
Pβ,β+1Pβ+1,βRβ+1). Hence, Rβ is the total transition probability for pathways that

return to node β and are confined to nodes with index greater than β without escape

from CN .

We can similarly calculate the total probability for pathways returning to β and

confined to nodes with indices smaller than β. The total probability factor for recross-

ings between nodes 1 and 2 is L2 = 1/(1 − P1,2P2,1). Hence, the required probability

for recrossings between nodes 2 and 3 including arbitrary recrossings between 1 and

2 is L3 = 1/(1 − P2,3P3,2L2). Continuing up to recrossings between nodes β − 1 and

β we obtain the total return probability for pathways restricted to this side of β as
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Lβ = 1/(1 − Pβ−1,βPβ,β−1Lβ−1). The general recursive definitions of Lj and Rj are:

Lj =





1, j = 1,

1/(1 − Pj−1,jPj,j−1Lj−1), j > 1,

and Rj =





1, j = N,

1/(1 − Pj,j+1Pj+1,jRj+1), j < N.

(C.2)

We can now calculate SCN

β,β as

SCN

β,β =

∞∑

m=0

m∑

n=0

n!

m!(n −m)!
(Pβ−1,βPβ,β−1Lβ−1)

n (Pβ,β+1Pβ+1,βRβ+1)
m−n

=
∞∑

m=0

(Pβ−1,βPβ,β−1Lβ−1 + Pβ,β+1Pβ+1,βRβ+1)
m

= (1− Pβ−1,βPβ,β−1Lβ−1 − Pβ,β+1Pβ+1,βRβ+1)
−1

=

(
1− Lβ − 1

Lβ
− Rβ − 1

Rβ

)−1

=
LβRβ

Lβ − LβRβ + Rβ
,

(C.3)

where we have used Equation C.2 and the multinomial theorem [242].

We can now derive SCN

α,β as follows. If α > β we can write

SCN

α,β = SCN

α−1,βPα,α−1Rα. (C.4)

SCN

α−1,β gives the total transition probability from β to α − 1, so the corresponding

probability for node α is SCN

α−1,β times the branching probability from α − 1 to α,

i.e. Pα,α−1, times Rα, which accounts for the weight accumulated from all possible

paths that leave and return to node α and are restricted to nodes with indexes greater

than α. We can now replace SCN

α−1,β by SCN

α−2,βPα−1,α−2Rα−1 and so on, until SCN

α,β is

expressed in terms of SCN

β,β . Similarly, if α < β we have

SCN

α,β = SCN

α+1,βPα,α+1Lα, (C.5)

and hence

SCN

α,β =





SCN

β,β

β−1∏

i=α

Pi,i+1Li, α < β,

SCN

β,β

α∏

i=β+1

Pi,i−1Ri, α > β.

(C.6)



Appendix D

Total Escape Probability for

Chain Graphs, Σ
CN
β

So long as there is at least one escape route from CN the total escape probability must

be unity:

ΣCN

β =

N∑

j=1

ECN

j SCN

j,β = 1, (D.1)

otherwise, if Adj[CN ] is the empty set, we have

ΣCN

β =
N∑

j=1

SCN

j,β = 1. (D.2)

For example, to show that the formulae in Appendix C are consistent with the first

result we expand

ECN

j = 1− Pj−1,j − Pj+1,j (D.3)

and define

P0,1 = PN+1,N = 0 (D.4)

for convenience, so that

ΣCN

β = SCN

1,β − P0,1SCN

1,β − P2,1SCN

1,β

+ SCN

2,β − P1,2SCN

2,β − P3,2SCN

2,β
...

...

+ SCN

N−1,β − PN−2,N−1SCN

N−1,β − PN,N−1SCN

N−1,β

+ SCN

N,β − PN−1,NSCN

N,β − PN+1,NSCN

N,β.

(D.5)
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Using the recursion relations in Equation C.2 (which assume that there is an escape

route from CN ) we can show that

SCN

j,β − S
CN

j−1,βPj,j−1 − SCN

j+1,βPj,j+1 = 0, (D.6)

for j 6= β. We can now group together terms in Equation D.5 into sets of three that

sum to zero. The terms that do not immediately cancel are as follows. From the first

and second lines of Equation D.5 we have

SCN

1,β − P2,1SCN

2,β = 0 (D.7)

because

SCN

1,β = SCN

2,β P2,1L1 = SCN

2,β P2,1. (D.8)

Similarly, on the last two lines we find

SCN

N,β − PN,N−1SCN

N−1,β = 0 (D.9)

because

SCN

N,β = PN,N−1SCN

N−1,βRN = PN,N−1SCN

N−1,β. (D.10)

The final remaining terms are:

SCN

β,β − S
CN

β−1,βPβ,β−1 − SCN

β+1,βPβ,β+1

= SCN

β,β − S
CN

β,β

(
1− 1

Lβ

)
− SCN

β,β

(
1− 1

Rβ

)

= SCN

β,β

(
1

Lβ
+

1

Rβ
− 1

)

= SCN

β,β

(
Lβ + Rβ − LβRβ

LβRβ

)

= 1,

(D.11)

which proves Equation D.1.



Appendix E

Finding the Shortest and the

Fastest Paths

There are many paths to the top of the mountain,

but the view is always the same.

Chinese proverb

Techniques for finding the shortest and the fastest pathways can be useful during sam-

pling for pathways, in post-processing and analysis of DPS databases, and in various

optimisations of pathway ensembles [8, 10, 192, 290, 291]. Given a digraph representa-

tion of a connected database of minima and transition states it is possible to identify

the shortest path between any two minima using a breadth-first search algorithm [154],

which runs in linear time. The shortest path, however, is not necessarily the fastest.

Recently Evans suggested using Dijkstra’s algorithm [153] for finding the path with the

largest non-recrossing DPS rate [290]. It was pointed out by Carr, however, that the

weight function used in Reference [290] is not positively defined, and the use of the

Bellman-Ford-Moore (BFM) algorithm [292–294] was suggested instead [291]. Because

Dijkstra’s algorithm scales better than BFM algorithm (see Figure E.1) we describe

below a weight function that enables us to use the Dijkstra’s algorithm for finding the

fastest path.

As detailed in Section 4.1.1, within a digraph representation of a coarse-grained PES

each minimum is represented by a single node and each transition state is represented

by two oppositely directed edges. Here we ignore degenerate rearrangements since they
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do not affect the rates, and for cases where more than one transition state links the

same pair of minima only the one with the fastest forward and backward rates is used.

Adopting the non-recrossing DPS rate definition from Equation 4.11 we can associate

forward and backward rate constants

ka,b =
P eq

b

P eq
B

ka,i1 ki1,i2 · · · kin,b∑

γ1

kγ1,i1

∑

γ2

kγ2,i2 · · ·
∑

γn

kγn,in

,

kb,a =
P eq

a

P eq
A

kb,i1 ki1,i2 · · · kin,a∑

γ1

kγ1,i1

∑

γ2

kγ2,i2 · · ·
∑

γn

kγn,in

(E.1)

with a pathway ξ = a, i1, i2, . . . , in, b.

For a detailed description of Dijkstra and BFM algorithms we refer the reader to

Reference [154]. A suitable choice of edge weight function to be used with either of the

shortest path algorithms must be made. We define the weight of each directed edge

α→ β as

w(β, α) = ln

(∑
γ kγ,α

kβ,α

)
. (E.2)

Note that w(β, α) 6= w(α, β) and 0 6 w < ∞. Since the weight is non-negative it is

possible to apply Dijkstra’s algorithm to find the fastest pathway [154].

It makes sense to include only minima with more than one connection when search-

ing for the fastest pathway. In our calculations we first iteratively identified a connected

subset of minima with the number of connections greater than one, and then run the

above algorithm for this subset.

To find the fastest path connecting minima a and b in the direction b → a it

is necessary to solve either a single-source shortest paths problem with minimum b

chosen as a source, or a single destination shortest paths problem with minimum a

chosen as the destination. In the latter case all the edges in the graph need to be

reversed, which can be accomplished by simply swapping the arguments to the weight

function in Equation E.2. This reversal is possible because our graph is a symmetric

digraph, i.e. if there is an edge a→ b then there is also an edge b→ a.

A useful check for correct implementation of this algorithm is to verify that the

weight of the shortest path from minimum b to minimum a, W (a, b), is related to the
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Figure E.1: Performance comparison of BFM and static Dijkstra algorithms for an evolving

database of minima and transition states for tryptophan zipper 2. CPU time as a function

of the number of minima in the database, m, is shown. The number of transition states, t,

scales linearly with m, and for the plotted data set the dependence can be approximated as

t = 1.59m− 46.98 with a correlation coefficient of 1.000. The units of time are arbitrary.

rate ka,b calculated for that pathway by

ka,b =
P eq

b

P eq
B

exp
(
−W (a, b)

)∑

γ

kγ,b. (E.3)

The BFM algorithm runs in O(|V | |E|) time while Dijkstra’s algorithm as described

in Reference [153] scales as O(|V |2 + |E|) = O(|V |2) [154]. Although both algorithms

appear to have similar (quadratic) asymptotic complexity for the case of sparse graphs

(e.g. |E| = O(|V |)) the scaling prefactor is smaller for Dijkstra’s algorithm. In addition,

for sparse graphs with |E| = o(|V |2/ lg |V |) an implementation of Dijkstra’s algorithm

that utilises a priority queue of some sort can improve the asymptotic bounds fur-

ther. Priority queues based on binary min-heap and Fibonacci heap [276] result in

O((|E|+ |V |) lg |V |) = O(|E| lg |V |) and O(|V | lg |V |+ |E|) scaling of the algorithm, re-

spectively [154]. In the present work we have used a priority queue based on Fibonacci

heap. A performance comparison of our implementations of BFM and static Dijkstra’s

algorithms is shown in Figure E.1.
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Figure E.2: The rate of the fastest pathway, ka,b, as a function of the iteration number

for the evolving database of tryptophan zipper 3-I. Note log10 scale on vertical axis. As the

generation of new connections can affect the rates of the pathways explicitly recorded in the

pathway database (see Equation E.1), these rates were recomputed at the end of the calculation.

This result, and the fact that ka,b includes recrossing contributions, explains the wiggles in the

data. The recrossing contribution was calculated using Algorithm B.1, which is discussed in

Chapter 4.

Since knowledge of all the pathways on a complicated PES is out of the question a

representative sample must be obtained to properly describe the property of interest.

It is unclear what is the best strategy of evolving the pathway database if the proper

description of kinetics is sought, as sampling techniques may introduce a bias towards

pathways of particular type.

In previous DPS studies a set of perturbations was applied to the fastest known

path to generate new ones [8–10]. New pathways were constructed from a subset

of stationary points featured in the pathway being perturbed, and from these that

were found as a result of perturbation. Because building the shortest paths tree with

Dijkstra’s algorithm is relatively cheap it is possible to analyse the whole database for

the presence of new faster pathways rather than just the subset. Results for an example

application are presented in Figure E.2. After a set of perturbations was applied to

the fastest currently known pathway a← b Dijkstra’s algorithm was used to solve the
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single-source shortest paths problem to build the shortest paths tree rooted at minimum

b. For path ξ the set of perturbations constituted l(ξ) − ∆ + 1 attempts to shortcut

the path, where ∆ is a shortcut parameter, ∆ ∈ {1, 2, . . . , l(ξ)}.
Each attempt to shortcut the path was realised as a single connect run (see Chap-

ter 2) seeded with two minima α, β ∈ ξ separated by a gap of length ∆ along the path.

If the fastest path a ← b found by Dijkstra’s algorithm was different (not necessarily

new) from the one that was currently being perturbed the iteration was completed,

this pathway was perturbed in the next iteration and parameter ∆ was reset to 1.

Otherwise, ∆ was incremented by one, unless ∆ = l(ξ) in which case the calculation

was terminated.
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[94] L. L. Stachó and M. I. Bán, An algorithm for determining dynamically defined

reaction paths (DDRP), Theor. Chim. Acta 84, 535 (1993).

[95] G. Dömötör, M. I. Bán and L. L. Stachó, Experiences and practical hints on using

the DDRP method, illustrated by the example of the H(2)+H reaction, J. Comput.

Chem. 14, 1491 (1993).

[96] C. Y. Peng and H. B. Schlegel, Combining synchronous transit and quasi-Newton

methods to find transition states, Israeli J. Chem. 33, 449 (1993).

[97] A. Matro, D. L. Freeman and J. D. Doll, Locating transition states using double-

ended classical trajectories, J. Chem. Phys. 101, 10458 (1994).

[98] O. S. Smart, A new method to calculate reaction paths for conformational tran-

sitions of large molecules, Chem. Phys. Lett. 222, 503 (1994).

[99] M. I. Bán, G. Dömötör and L. L. Stachó, Dynamically defined reaction-path
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