
Appendix D

Total Escape Probability for

Chain Graphs, Σ
CN
β

So long as there is at least one escape route from CN the total escape probability must

be unity:
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otherwise, if Adj[CN ] is the empty set, we have
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For example, to show that the formulae in Appendix C are consistent with the first

result we expand
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and define
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for convenience, so that
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Using the recursion relations in Equation C.2 (which assume that there is an escape

route from CN ) we can show that
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for j 6= β. We can now group together terms in Equation D.5 into sets of three that

sum to zero. The terms that do not immediately cancel are as follows. From the first

and second lines of Equation D.5 we have
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Similarly, on the last two lines we find
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The final remaining terms are:

SCN

β,β − SCN

β−1,βPβ,β−1 − SCN

β+1,βPβ,β+1

= S
CN

β,β − S
CN

β,β

(

1 −
1

Lβ

)

− S
CN

β,β

(

1 −
1

Rβ

)

= S
CN

β,β

(

1

Lβ

+
1

Rβ

− 1

)

= SCN

β,β

(

Lβ + Rβ − LβRβ

LβRβ

)

= 1,

(D.11)

which proves Equation D.1.


