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Abstract

A modification of the nudged elastic band (NEB) method is presented that enables

stable optimisations to be run using both the limited-memory quasi-Newton (L-BFGS)

and slow-response quenched velocity Verlet minimisers. The performance of this new

‘doubly nudged’ DNEB method is analysed in conjunction with both minimisers and

compared with previous NEB formulations. We find that the fastest DNEB approach

(DNEB/L-BFGS) can be quicker by up to two orders of magnitude. Applications

to permutational rearrangements of the seven-atom Lennard-Jones cluster (LJ7) and

highly cooperative rearrangements of LJ38 and LJ75 are presented.

Secondly, we propose new measures of localisation and cooperativity for the analysis

of atomic rearrangements. We show that for both clusters and bulk material coopera-

tive rearrangements usually have significantly lower barriers than uncooperative ones,

irrespective of the degree of localisation. We also find that previous methods used to

sample stationary points are biased towards rearrangements of particular types. Linear

interpolation between local minima in double-ended transition state searches tends to

produce cooperative rearrangements, while random perturbations of all the coordinates,

as sometimes used in single-ended searches, has the opposite effect.

Thirdly, we report a new algorithm for constructing pathways between local minima

that involve a large number of intervening transition states on the PES. A significant

improvement in efficiency has been achieved by changing the strategy for choosing

successive pairs of local minima that serve as endpoints for the next search. We employ

Dijkstra’s algorithm to identify the ‘shortest’ path corresponding to missing connections

within an evolving database of local minima and the transition states that connect them.

Finally, we describe an exact approach for calculating the total transition proba-

bilities in finite-state discrete-time Markov processes. All the states and the rules for

transitions between them must be known in advance. We can then calculate averages

over a given ensemble of paths for both additive and multiplicative properties in a

non-stochastic and non-iterative fashion. In particular, we can calculate the mean first

passage time between arbitrary groups of stationary points for discrete path sampling

databases, and hence extract phenomenological rate constants. We present a number

of examples to demonstrate the efficiency and robustness of this approach.
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