[1]    J. Nocedal, Updating quasi-Newton matrices with limited storage, Math. Comp. 35, 773 (1980).

[2]    D. C. Liu and J. Nocedal, On limited memory BFGS method for large scale optimization, Math. Prog. 45, 503 (1989).

[3]    J. Nocedal, Software for large-scale unconstrained optimization, nocedal/lbfgs.html (2000).

[4]    B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan and M. Karplus, CHARMM: A program for macromolecular energy, minimization, and dynamics calculations, J. Comp. Chem. 4, 187 (1983).

[5]    E. Neria, S. Fischer and M. Karplus, Simulation of activation free energies in molecular systems, J. Chem. Phys. 105, 1902 (1996).

[6]    A. D. Mackerell Jr., D. Bashford, M. Bellott, R. L. D. Jr., J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher III, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin and M. Karplus, All-atom empirical potential for molecular modelling and dynamics studies of proteins, J. Phys. Chem. B 102, 3586 (1998).

[7]    S. A. Trygubenko and D. J. Wales, A doubly nudged elastic band method for finding transition states, J. Chem. Phys. 120, 2082 (2004).

[8]    D. J. Wales, Discrete path sampling, Mol. Phys. 100, 3285 (2002).

[9]    D. J. Wales, Energy landscapes: Applications to clusters, biomolecules and glasses, Cambridge University Press, Cambridge (2003).

[10]    D. J. Wales, Some further applications of discrete path sampling to cluster isomerization, Mol. Phys. 102, 883 (2004).

[11]    T. Lazaridis and M. Karplus, Effective energy function for protein dynamics and thermodynamics, Proteins: Struct., Func. and Gen. 35, 133 (1999).

[12]    G. M. Crippen and H. A. Scheraga, Minimization of polypeptide energy. X. A global search algorithm, Arch. Biochem. Biophys. 144, 453 (1971).

[13]    J. Pancíř, Calculation of the least energy path on the energy hypersurface, Coll. Czech. Chem. Comm. 40, 1112 (1974).

[14]    R. L. Hilderbrandt, Application of Newton-Raphson optimization techniques in molecular mechanics calculations, Comput. Chem 1, 179 (1977).

[15]    C. J. Cerjan and W. H. Miller, On finding transition states, J. Chem. Phys. 75, 2800 (1981).

[16]    J. Simons, P. Jèrgenson, H. Taylor and J. Ozment, Walking on potential energy surfaces, J. Phys. Chem. 87, 2745 (1983).

[17]    A. Banerjee, N. Adams, J. Simons and R. Shepard, Search for stationary points on surfaces, J. Phys. Chem. 89, 52 (1985).

[18]    J. Baker, An algorithm for the location of transition states, J. Comp. Chem. 7, 385 (1986).

[19]    D. J. Wales, Rearrangements of 55-atom Lennard-Jones and (C60)55 clusters, J. Chem. Phys. 101, 3750 (1994).

[20]    D. J. Wales and J. Uppenbrink, Rearrangements in model face-centred-cubic solids, Phys. Rev. B 50, 12342 (1994).

[21]    L. J. Munro and D. J. Wales, Rearrangements of bulk face-centred cubic nickel modelled by a Sutton-Chen potential, Faraday Discuss. 106, 409 (1997).

[22]    L. J. Munro and D. J. Wales, Defect migration in crystalline silicon, Phys. Rev. B 59, 3969 (1999).

[23]    Y. Kumeda, L. J. Munro and D. J. Wales, Transition states and rearrangement mechanisms from hybrid eigenvector-following and density functional theory. Application to C10H10 and defect migration in crystalline silicon, Chem. Phys. Lett. 341, 185 (2001).

[24]    D. J. Wales and T. R. Walsh, Theoretical study of the water pentamer, J. Chem. Phys. 105, 6957 (1996).

[25]    K. Müller and L. D. Brown, Location of saddle points and minimum energy paths by a constrained simplex optimization procedure, Theor. Chim. Acta 53, 75 (1979).

[26]    M. A. Novotny, Monte Carlo algorithms with absorbing Markov chains: Fast local algorithms for slow dynamics, Phys. Rev. Lett. 74, 1 (1995).

[27]    H. Jónsson, G. Mills and W. Jacobsen, Nudged elastic band method for finding minimum energy paths of transitions, in Classical and quantum dynamics in condensed phase simulations, edited by B. J. Berne, G. Ciccotti and D. F. Coker, p. 385, World Scientific (1998).

[28]    G. Henkelman and H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, J. Chem. Phys. 113, 9978 (2000).

[29]    G. Henkelman, B. P. Uberuaga and H. Jónsson, A climbing image nudged elastic band method for finding saddle points, J. Chem. Phys. 113, 9901 (2000).

[30]    G. Henkelman, G. Johannesson and H. Jónsson, Methods for finding saddle points and minimum energy paths, in Progress in theoretical chemistry and physics, edited by S. D. Schwartz, p. 269, Kluwar Academic Publishers, Dordrecht (2000).

[31]    W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical recipes in Fortran: The art of scientific computing, Cambridge University Press, Cambridge (1992).

[32]    M. P. Allen and D. J. Tildesley, Computer simulation of liquids, Clarendon Press, Oxford (1989).

[33]    Wikipedia, the free encyclopedia, (2006).

[34]    J. N. Murrell, S. Carter, S. C. Farantos, P. Huxley and A. J. C. Varandas, Molecular potential energy functions, Wiley, Chichester (1984).

[35]    J. N. Murrell, The many-body expansion of the potential energy function for elemental clusters, Int. J. Quant. Chem. 37, 95 (1990).

[36]    R. L. Johnston, Atomic and molecular clusters, Taylor & Francis, New York (2002).

[37]    H. B. Schlegel, Exploring potential energy surfaces for chemical reactions: An overview of some practical methods, J. Comp. Chem. 24, 1514 (2003).

[38]    J. N. Murrell and K. J. Laidler, Symmetries of activated complexes, Trans. Faraday Soc. 64, 371 (1968).

[39]    D. J. Wales and J. P. K. Doye, Stationary points and dynamics in high-dimensional systems, J. Chem. Phys. 119, 12409 (2003).

[40]    J. P. K. Doye and D. J. Wales, Saddle points and dynamics of Lennard-Jones clusters, solids, and supercooled liquids, J. Chem. Phys. 116, 3777 (2002).

[41]    F. H. Stillinger, Exponential multiplicity of inherent structures, Phys. Rev. E 59, 48 (1999).

[42]    F. H. Stillinger and T. A. Weber, Hidden structures in liquids, Phys. Rev. A 25, 978 (1982).

[43]    F. H. Stillinger and T. A. Weber, Packing structures and transitions in liquids and solids, Science 225, 983 (1984).

[44]    H. Pelzer and E. Wigner, The speed constants of the exchange reactions, Z. Phys. Chem. B15, 445 (1932).

[45]    H. Eyring, The activated complex and the absolute rate of chemical reactions, Chem. Rev. 17, 65 (1935).

[46]    M. G. Evans and M. Polanyi, Some applications of the transition state method to the calculation of reaction velocities, especially in solution, Trans. Faraday Soc. 31, 875 (1935).

[47]    W. Forst, Theory of unimolecular reactions, Academic Press, New York (1973).

[48]    K. J. Laidler, Chemical kinetics, Harper & Row, New York (1987).

[49]    P. Pulay, G. Fogorasi, F. Pang and J. E. Boggs, Systematic ab initio gradient calculation of molecular geometries, force constants, and dipole moment derivatives, J. Am. Chem. Soc. 101, 2550 (1979).

[50]    G. Fogorasi, X. Zhou, P. W. Taylor and P. Pulay, The calculation of ab initio molecular geometries: efficient optimization by natural internal coordinates and empirical correction by offset forces, J. Am. Chem. Soc. 114, 8191 (1992).

[51]    P. Pulay and G. Fogorasi, Geometry optimization in redundant internal coordinates, J. Chem. Phys. 96, 2856 (1996).

[52]    J. Baker, A. Kessi and B. Delley, The generation and use of delocalized internal coordinates in geometry optimization, J. Chem. Phys. 105, 192 (1996).

[53]    C. Peng, P. Y. Ayala, H. B. Schlegel and M. J. Frisch, Using redundant internal coordinates to optimize equilibrium geometries and transition states, J. Comp. Chem. 17, 49 (1996).

[54]    J. Baker, D. Kinghorn and P. Pulay, Geometry optimization in delocalized internal coordinates: An efficient quadratically scaling algorithm for large molecules, J. Chem. Phys. 110, 4986 (1999).

[55]    S. R. Billeter, A. J. Turner and W. Thiel, Linear scaling geometry optimisation and transition state search in hybrid delocalised internal coordinates, Phys. Chem. Chem. Phys. 2, 2177 (2000).

[56]    B. Paizs, J. Baker, S. Suhai and P. Pulay, Geometry optimization of large biomolecules in redundant internal coordinates, J. Chem. Phys. 113, 6566 (2000).

[57]    V. Bakken and T. Helgaker, The efficient optimization of molecular geometries using redundant internal coordinates, J. Chem. Phys. 117, 9160 (2002).

[58]    J. W. McIver and A. Komornicki, Structure of transition states in organic reactions. General theory and an application to the cyclobutene-butadiene isomerization using a semiempirical molecular orbital method, J. Am. Chem. Soc. 94, 2625 (1972).

[59]    D. O’Neal, H. Taylor and J. Simons, Potential surface walking and reaction paths for C2v Be + H2 BeH2 Be + 2H (1A1), J. Phys. Chem. 88, 1510 (1984).

[60]    S. Bell and J. S. Crighton, Locating transition states, J. Chem. Phys. 80, 2464 (1984).

[61]    D. T. Nguyen and D. A. Case, On finding stationary states on large-molecule potential energy surfaces, J. Phys. Chem. 89, 4020 (1985).

[62]    J. Baker, An algorithm for geometry optimization without analytical gradients, J. Comp. Chem. 8, 563 (1987).

[63]    M. C. Smith, How to find a saddle point, Int. J. Quant. Chem. 37, 773 (1990).

[64]    J. Nichols, H. Taylor, P. Schmidt and J. Simons, Walking on potential-energy surfaces, J. Chem. Phys. 92, 340 (1990).

[65]    J. Baker and W. H. Hehre, Geometry optimization in Cartesian coordinates: the end of the Z-matrix?, J. Comp. Chem. 12, 606 (1991).

[66]    J. Baker, Geometry optimization in Cartesian coordinates: constrained optimization, J. Comp. Chem. 13, 240 (1992).

[67]    C. J. Tsai and K. D. Jordan, Use of an eigenmode method to locate the stationary points on the potential energy surfaces of selected argon and water clusters, J. Phys. Chem. 97, 11227 (1993).

[68]    D. J. Wales, Locating stationary points for clusters in Cartesian coordinates, J. Chem. Soc., Faraday Trans. 89, 1305 (1993).

[69]    S. F. Chekmarev, A simple gradient method for locating saddles, Chem. Phys. Lett. 227, 354 (1994).

[70]    J.-Q. Sun and K. Ruedenberg, Locating transition states by quadratic image gradient descent on potential energy surfaces, J. Chem. Phys. 101, 2157 (1994).

[71]    J.-Q. Sun and K. Ruedenberg, A simple prediction of approximate transition states on potential energy surfaces, J. Chem. Phys. 101, 2168 (1994).

[72]    F. Jensen, Locating transition structures by mode following: a comparison of six methods on the Ar8 Lennard-Jones potential, J. Chem. Phys. 102, 6706 (1995).

[73]    J. M. Bofill and M. Comajuan, Analysis of the updated Hessian matrices for locating transition structures, J. Comp. Chem. 16, 1326 (1995).

[74]    Q. Zhao and J. B. Nicholas, Transition state optimization using the divide-and-conquer method: Reaction of trans-2-butene with HF, J. Chem. Phys. 104, 767 (1996).

[75]    W. Quapp, A gradient-only algorithm for tracing a reaction path uphill to the saddle of a potential energy surface, Chem. Phys. Lett. 253, 286 (1996).

[76]    J. Baker and F. Chan, The location of transition states: a comparison of Cartesian, Z-matrix and natural internal coordinates, J. Comp. Chem. 17, 888 (1996).

[77]    T. R. Walsh and D. J. Wales, Rearrangements of the water trimer, J. Chem. Soc., Faraday Trans. 92, 2505 (1996).

[78]    P. Y. Ayala and H. B. Schlegel, A combined method for determining reaction paths, minima, and transition state geometries, J. Chem. Phys. 107, 375 (1997).

[79]    A. Ulitsky and D. Shalloway, Finding transition states using contangency curves, J. Chem. Phys. 106, 10099 (1997).

[80]    B. Paizs, G. Fogarasi and P. Pulay, An efficient direct method for geometry optimization of large molecules in internal coordinates, J. Chem. Phys. 109, 6571 (1998).

[81]    O. Farkas and H. B. Schlegel, Methods for geometry optimization of large molecules. I. An O(N-2) algorithm for solving systems of linear equations for the transformation of coordinates and forces, J. Chem. Phys. 109, 7100 (1998).

[82]    N. Mousseau and G. T. Barkema, Travelling through potential energy landscapes of disordered materials: The activation-relaxation technique, Phys. Rev. E 57, 2419 (1998).

[83]    H. Goto, A frontier mode-following method for mapping saddle points of conformational interconversion in flexible molecules starting from the energy minimum, Chem. Phys. Lett. 292, 254 (1998).

[84]    W. Quapp, M. Hirsch, O. Imig and D. Heidrich, Searching for saddle points of potential energy surfaces by following a reduced gradient, J. Comp. Chem. 19, 1087 (1998).

[85]    O. Farkas and H. B. Schlegel, Methods for optimizing large molecules. II. Quadratic search, J. Chem. Phys. 111, 10806 (1999).

[86]    D. J. Wales, J. P. K. Doye, M. A. Miller, P. N. Mortenson and T. R. Walsh, Energy landscapes: From clusters to biomolecules, Adv. Chem. Phys. 115, 1 (2000).

[87]    L. R. Pratt, A statistical method for identifying transition states in high dimensional problems, J. Chem. Phys. 85, 5045 (1986).

[88]    R. Elber and M. Karplus, A method for determining reaction paths in large molecules: Application to myoglobin, Chem. Phys. Lett. 139, 375 (1987).

[89]    R. S. Berry, H. L. Davis and T. L. Beck, Finding saddles on multidimensional potential surfaces, Chem. Phys. Lett. 147, 13 (1988).

[90]    R. Czerminski and R. Elber, Reaction path study of conformational transitions in flexible systems, J. Chem. Phys. 92, 5580 (1990).

[91]    S. Fischer and M. Karplus, Conjugate peak refinement — an algorithm for finding reaction paths and accurate transition states in systems with many degrees of freedom, Chem. Phys. Lett. 194, 252 (1992).

[92]    L. L. Stachó and M. I. Bán, A global strategy for determining reaction paths. 1. General theory of a procedure finding Fukui intrinsic reaction coordinate, Theor. Chim. Acta 83, 433 (1992).

[93]    I. V. Ionova and E. A. Carter, Ridge method for finding saddle points on potential energy surfaces, J. Chem. Phys. 98, 6377 (1993).

[94]    L. L. Stachó and M. I. Bán, An algorithm for determining dynamically defined reaction paths (DDRP), Theor. Chim. Acta 84, 535 (1993).

[95]    G. Dömötör, M. I. Bán and L. L. Stachó, Experiences and practical hints on using the DDRP method, illustrated by the example of the H(2)+H reaction, J. Comput. Chem. 14, 1491 (1993).

[96]    C. Y. Peng and H. B. Schlegel, Combining synchronous transit and quasi-Newton methods to find transition states, Israeli J. Chem. 33, 449 (1993).

[97]    A. Matro, D. L. Freeman and J. D. Doll, Locating transition states using double-ended classical trajectories, J. Chem. Phys. 101, 10458 (1994).

[98]    O. S. Smart, A new method to calculate reaction paths for conformational transitions of large molecules, Chem. Phys. Lett. 222, 503 (1994).

[99]    M. I. Bán, G. Dömötör and L. L. Stachó, Dynamically defined reaction-path (DDRP) method, J. Mol. Struct. (Theochem) 311, 29 (1994).

[100]    G. Mills and H. Jónsson, Quantum and thermal effects in H2 dissociative adsorption: Evaluation of free energy barriers in multidimensional quantum systems, Phys. Rev. Lett. 72, 1124 (1994).

[101]    I. V. Ionova and E. A. Carter, Direct inversion in the iterative subspace-induced acceleration of the ridge method for finding transition states, J. Chem. Phys. 103, 5437 (1995).

[102]    L. L. Stachó, G. Dömötör and M. I. Bán, On the Elber-Karplus reaction path-following method and related procedures, Chem. Phys. Lett. 311, 328 (1999).

[103]    R. Elber and M. Karplus, Reply to a paper by Stachó et al., Chem. Phys. Lett. 311, 335 (1999).

[104]    G. Henkelman and H. Jónsson, A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives, J. Chem. Phys. 111, 7010 (1999).

[105]    G. Henkelman and H. Jónsson, Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table, J. Chem. Phys. 115, 9657 (2001).

[106]    R. A. Miron and K. A. Fichthorn, The step and slide method for finding saddle points on multidimensional potential surfaces, J. Chem. Phys. 115, 8742 (2001).

[107]    P. Maragakis, S. A. Andreev, Y. Brumer, D. R. Reichman and E. Kaxiras, Adaptive nudged elastic band approach for transition state calculation, J. Chem. Phys. 117, 4651 (2002).

[108]    L. Xie, H. Liu, and W. Yang, Adapting the nudged elastic band method for determining minimum-energy paths of chemical reactions in enzymes, J. Chem. Phys. 120, 8039 (2004).

[109]    B. Peters, A. Heyden, A. T. Bell and A. Chakraborty, A growing string method for determining transition states: Comparison to the nudged elastic band and string methods, J. Chem. Phys. 120, 7877 (2004).

[110]    R. Crehuet and M. J. Field, A temperature-dependent nudged elastic band algorithm, J. Chem. Phys. 118, 9563 (2003).

[111]    M. E. J. Newman, The structure and function of complex networks, SIAM Review 45, 167 (2003).

[112]    R. S. Berry and R. Breitengraser-Kunz, Topography and dynamics of multidimensional interatomic potential surfaces, Phys. Rev. Lett. 74, 3951 (1995).

[113]    M. A. Miller, J. P. K. Doye and D. J. Wales, Structural relaxation in atomic clusters: Master equation dynamics, Phys. Rev. E 60, 3701 (1999).

[114]    J. P. K. Doye and D. J. Wales, Structural transitions and global minima of sodium chloride clusters, Phys. Rev. B 59, 2292 (1999).

[115]    J. P. K. Doye and C. P. Massen, Characterizing the network topology of the energy landscapes of atomic clusters, J. Chem. Phys. 122, 084105 (2005).

[116]    S. H. Strogatz, Exploring complex networks, Nature 410, 268 (2001).

[117]    D. J. Watts and S. H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature 393, 440 (1998).

[118]    A. L. Barabási and R. Albert, Emergence of scaling in random networks, Science 286, 509 (1999).

[119]    J. S. Andrade, H. J. Herrmann, R. F. S. Andrade and L. R. da Silva, Apollonian networks: Simultaneously scale-free, small world, Euclidean, space filling, and with matching graphs, Phys. Rev. Lett. 94, 018702 (2005).

[120]    E. Nelson, Dynamical theories of Brownian motion, Princeton University Press, Princeton (1967).

[121]    H. C. Berg, Random walks in biology, Princeton University Press, Princeton (1993).

[122]    W. Forst, Unimolecular reactions: A concise introduction, Cambridge University Press, Cambridge (2003).

[123]    G. R. Grimmett and D. R. Stirzaker, Probability and random processes, Oxford University Press, Oxford (2005).

[124]    I. Todhunter, History of the mathematical theory of probability, Cambridge University Press, Cambridge (1965).

[125]    T. A. Halgren and W. N. Lipscomb, The synchronous-transit method for determining reaction pathways and locating molecular transition states, Chem. Phys. Lett. 49, 225 (1977).

[126]    M. J. S. Dewar, E. F. Healy and J. J. P. Stewart, Location of transition states in reaction mechanisms, J. Chem. Soc., Faraday Trans. 2 80, 227 (1984).

[127]    C. Cardenas-Lailhacar and M. C. Zerner, Searching for transition-states — the line-then-plane (LTP) approach, Int. J. Quant. Chem. 55, 429 (1995).

[128]    D. A. Liotard, Algorithmic tools in the study of semiempirical potential surfaces, Int. J. Quant. Chem. 44, 723 (1992).

[129]    C. Choi and R. Elber, Reaction path study of helix formation in tetrapeptides — effect of side chains, J. Chem. Phys. 94, 751 (1991).

[130]    F. Jensen, Introduction to computational chemistry, John Willey & Sons (1999).

[131]    CSEP, Electronic book on mathematical optimization, (1995).

[132]    R. Fletcher, Practical methods of optimization, John Willey & Sons (2001).

[133]    D. A. Evans and D. J. Wales, The free energy landscape and dynamics of met-enkephalin, J. Chem. Phys. 119, 9947 (2003).

[134]    H. Goldstein, Classical mechanics, Addison-Wesley, Reading, Massachusetts (1980).

[135]    F. S. Acton, Numerical methods that work, Mathematical Association of America, Washington (1990).

[136]    D. R. Alfonso and K. D. Jordan, A flexible nudged elastic band program for optimisation of minimum energy pathways using ab initio electronic structure methods, J. Comp. Chem. 24, 990 (2003).

[137]    D. R. Alfonso, Driver for performing minimum energy path optimizations using the nudged elastic band algorithm, alfonso/NEB/neb.html (2002).

[138]    D. J. Wales, OPTIM: A program for optimizing geometries and calculating reaction pathways, (2006).

[139]    M. P. Hodges, Xmakemol: A program for visualizing atomic and molecular systems, version 5.14, (2006).

[140]    Mathematica, version 5.0, Wolfram Research, Inc., Champaign, Illinois (1996).

[141]    D. J. Wales, A Mathematica notebook containing some simple programs for making and manipulating triangulated polyhedra, (2002).

[142]    Y. M. Rhee, Construction of an accurate potential energy surface by interpolation with Cartesian weighting coordinates, J. Chem. Phys. 113, 6021 (2000).

[143]    C. Eckart, Some studies concerning rotating axes and polyatomic molecules, Phys. Rev. 47, 552–558 (1935).

[144]    A. D. McLachlan, A mathematical procedure for superimposing atomic coordinates of proteins, Acta. Crystallogr. A 28, 656 (1972).

[145]    A. Y. Dymarsky and K. N. Kudin, Computation of the pseudorotation matrix to satisfy the Eckart axis conditions, J. Chem. Phys. 122, 124103 (2005).

[146]    M. Dierksen, Comment on “Computation of the pseudorotation matrix to satisfy the Eckart axis conditions”, J. Chem. Phys. 122, 227101 (2005).

[147]    A. Y. Dymarsky and K. N. Kudin, Response to “Comment on ‘Computation of the pseudorotation matrix to satisfy the Eckart axis conditions’ , J. Chem. Phys. 122, 227102 (2005).

[148]    R. E. Leone and P. von R. Schleyer, Degenerate carbonium ions, Angew. Chem. Int. Ed. Engl. 9, 860 (1970).

[149]    J. P. K. Doye, M. A. Miller and D. J. Wales, Evolution of the potential energy surface with size for Lennard-Jones clusters, J. Chem. Phys. 111, 8417 (1999).

[150]    J. P. Neirotti, F. Calvo, D. L. Freeman and J. D. Doll, Phase changes in 38-atom Lennard-Jones clusters. I. A parallel tempering study in the canonical ensemble, J. Chem. Phys. 112, 10340 (2000).

[151]    F. Calvo, J. P. Neirotti, D. L. Freeman and J. D. Doll, Phase changes in 38-atom Lennard-Jones clusters. II. A parallel tempering study of equilibrium and dynamic properties in the molecular dynamics and microcanonical ensembles, J. Chem. Phys. 112, 10350 (2000).

[152]    F. H. Stillinger and T. A. Weber, Dynamics of structural transitions in liquids, Phys. Rev. A 28, 2408 (1983).

[153]    E. W. Dijkstra, A note on two problems in connection with graphs, Numerische Math. 1, 269 (1959).

[154]    T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to algorithms, The MIT Press, Cambridge, Massachusetts , Cambridge, Mass., 2nd edn. (2001).

[155]    E. W. Weisstein, ‘Complete graph’. From Mathworld — A Wolfram web resource, (2005).

[156]    A. G. Cochran, N. J. Skelton and M. A. Starovasnik, Tryptophan zippers: Stable, monomeric β-hairpins, Proc. Natl. Acad. Sci. USA 98, 5578 (2001).

[157]    C. D. Snow, L. Qiu, D. Du, F. Gai, S. J. Hagen and V. S. Pande, Trp zipper folding kinetics by molecular dynamics and temperature-jump spectroscopy, Proc. Natl. Acad. Sci. USA 101, 4077 (2004).

[158]    D. Du, Y. Zhu, C. Huang and F. Gai, Understanding the key factors that control the rate of β-hairpin folding, Proc. Natl. Acad. Sci. USA 101, 15915 (2004).

[159]    J. D. Bloom, Computer simulations of protein aggregation, Masters thesis, University of Cambridge (July 2002).

[160]    H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov and P. E. Bourne, The protein data bank, Nucleic Acids Research 28, 235 (2000).

[161]    Z. Li and H. A. Scheraga, Structure and free energy of complex thermodynamic systems, Proc. Natl. Acad. Sci. USA 84, 6611 (1987).

[162]    D. J. Wales and J. P. K. Doye, Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms, J. Phys. Chem. A. 101, 5111 (1997).

[163]    D. J. Wales and H. A. Scheraga, Global optimization of clusters, crystals and biomolecules, Science 285, 1368 (1999).

[164]    C. Branden and J. Tooze, Introduction to protein structure, Taylor & Francis, New York (1999).

[165]    S. A. Trygubenko, Rotamers in CHARMM19 force field, (2006).

[166]    R. Koradi, M. Billeter and K. Wüthrich, MOLMOL: A program for display and analysis of macromolecular structures, J. Mol. Graphics 14, 51 (1996).

[167]    J. M. Carr, S. A. Trygubenko and D. J. Wales, Finding pathways between distant local minima, J. Chem. Phys. 122, 234903 (2005).

[168]    J. P. K. Doye and D. J. Wales, Calculation of thermodynamic properties of small Lennard-Jones clusters incorporating anharmonicity, J. Chem. Phys. 102, 9659 (1995).

[169]    F. Calvo, J. P. K. Doye and D. J. Wales, Quantum partition functions from classical distributions: Application to rare-gas clusters, J. Chem. Phys. 114, 7312 (2001).

[170]    P. G. Mezey, Catchment region partitioning of energy hypersurfaces. I., Theor. Chim. Acta 58, 309 (1981).

[171]    T. F. Middleton and D. J. Wales, Energy landscapes of some model glass formers, Phys. Rev. B 64, 24205 (2001).

[172]    S. Sastry, P. G. Debenedetti and F. H. Stillinger, Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid, Nature 393, 554 (1998).

[173]    S. D. Stoddard and J. Ford, Numerical experiments on the stochastic behavior of a Lennard-Jones gas system, Phys. Rev. A 8, 1504 (1973).

[174]    M. Vogel, B. Doliwa, A. Heuer and S. C. Glotzer, Particle rearrangements during transitions between local minima of the potential energy landscape of a binary Lennard-Jones liquid, J. Chem. Phys. 120, 4404 (2004).

[175]    M. Arndt, R. Stannarius, H. Groothues, E. Hempel and F. Kremer, Length scale of cooperativity in the dynamic glass transition, Phys. Rev. Lett. 79, 2077 (1997).

[176]    L. Berthier, Time and length scales in supercooled liquids, Phys. Rev. E 69, 20201 (2004).

[177]    D. J. Wales, A microscopic basis for the global appearance of energy landscapes, Science 293, 2013 (2001).

[178]    T. V. Bogdan and D. J. Wales, New results for phase transitions from catastrophe theory, J. Chem. Phys. 120, 11090 (2004).

[179]    M. G. Bulmer, Principles of statistics, Dover Publications, New York (1979).

[180]    K. D. Ball, R. S. Berry, R. E. Kunz, F. Y. Li, A. Proykova and D. J. Wales, From topographies to dynamics on multidimensional potential energy surfaces of atomic clusters, Science 271, 963 (1996).

[181]    S. A. Trygubenko, Rearrangements of LJ75 cluster localized on two atoms, (2006).

[182]    Y. Gebremichael, M. Vogel and S. C. Glotzer, Particle dynamics and the development of string-like motion in a simulated monoatomic supercooled liquid, J. Chem. Phys. 120, 4415 (2004).

[183]    T. S. Jain and J. J. de Pablo, Influence of confinement on the vibrational density of states and the boson peak in a polymer glass, J. Chem. Phys. 120, 9371 (2004).

[184]    T. F. Middleton and D. J. Wales, Energy landscapes of model glasses. II. Results for constant pressure, J. Chem. Phys. 118, 4583 (2003).

[185]    B. Doliwa and A. Heuer, Energy barriers and activated dynamics in a supercooled Lennard-Jones liquid, Phys. Rev. E 67, 031506 (2003).

[186]    A. Saksaengwijit, B. Doliwa and A. Heuer, Description of the dynamics in complex energy landscapes via metabasins: A simple model study, J. Phys. Cond. Matt. 15, S1237 (2003).

[187]    G. Bolch, S. Greiner, H. de Meer and K. S. Trivedi, Queueing networks and Markov chains, John Wiley and Sons, New York (1998).

[188]    G. R. Grimmett and D. R. Stirzaker, One thousand exercises in probability, Oxford University Press, Oxford (2005).

[189]    N. G. van Kampen, Stochastic processes in physics and chemistry, Elsevier, Amsterdam (1981).

[190]    A. B. Bortz, M. H. Kalos and J. L. Lebowitz, A new algorithm for Monte Carlo simulation of Ising spin systems, J. Comput. Phys. 17, 10 (1975).

[191]    K. A. Fichthorn and W. H. Weinberg, Theoretical foundations of dynamical Monte Carlo simulations, J. Chem. Phys 95, 1090 (1991).

[192]    M. A. Miller, Energy landscapes and dynamics of model clusters, Ph.D. thesis, University of Cambridge (March 1999).

[193]    M. Block, R. Kunert, E. Schöll, T. Boeck and T. Teubner, Kinetic Monte Carlo simulation of formation of microstructures in liquid droplets, New J. Phys. 6, 166 (2004).

[194]    D. Mukherjee, C. G. Sonwane and M. R. Zachariah, Kinetic Monte Carlo simulation of the effect of coalescence energy release on the size and shape evolution of nanoparticles grown as an aerosol, J. Chem. Phys. 119, 3391 (2003).

[195]    F. M. Bulnes, V. D. Pereyra and J. L. Riccardo, Collective surface diffusion: n-fold way kinetic Monte Carlo simulation, Phys. Rev. E 58, 86–92 (1998).

[196]    R. E. Kunz, Dynamics of first-order phase transitions, Deutsch, Thun (1995).

[197]    D. A. Evans and D. J. Wales, Folding of the GB1 hairpin peptide from discrete path sampling, J. Chem. Phys. 121, 1080 (2004).

[198]    M. S. Apaydin, D. L. Brutlag, C. Guestrin, D. Hsu and J.-C. Latombe, Stochastic roadmap simulation: An efficient representation and algorithm for analyzing molecular motion, in Recomb ’02: Proceedings of the sixth annual international conference on computational biology, pp. 12–21. ACM Press, New York, NY (2002).

[199]    M. S. Apaydin, C. E. Guestrin, C. Varma, D. L. Brutlag and J.-C. Latombe, Stochastic roadmap simulation for the study of ligand-protein interactions, Bioinf. 18, S18 (2002).

[200]    N. Singhal, C. D. Snow and V. S. Pande, Using path sampling to build better Markovian state models: Predicting the folding rate and mechanism of a tryptophan zipper beta hairpin, J. Chem. Phys. 121, 415 (2004).

[201]    G. Chartrand, Introductory graph theory, Dover Publications, New York (1977).

[202]    NIST, Dictionary of algorithms and data structures, (2005).

[203]    A. Bar-Haim and J. Klafter, On mean residence and first-passage times in finite one-dimensional systems, J. Chem. Phys. 109, 5187 (1998).

[204]    B. E. Trumbo, Relationship between the Poisson and exponential distributions, (1999).

[205]    T. F. Middleton, Energy landscapes of model glasses, Ph.D. thesis, University of Cambridge (March 2003).

[206]    D. A. Reed and G. Ehrlich, Surface diffusivity and the time correlation of concentration fluctuations, Surf. Sci. 105, 603 (1981).

[207]    A. F. Voter, Introduction to the kinetic Monte Carlo method, in Radiation effects in solids, pp. 1–22. Springer-Verlag, New York (2005).

[208]    I. Goldhirsch and Y. Gefen, Analytic method for calculating properties of random walks on networks, Phys. Rev. A 33, 2583 (1986).

[209]    I. Goldhirsch and Y. Gefen, Biased random walk on networks, Phys. Rev. A 35, 1317 (1987).

[210]    M. Raykin, First-passage probability of a random walk on a disordered one-dimensional lattice, J. Phys. A 26, 449 (1992).

[211]    K. P. N. Murthy and K. W. Kehr, Mean first-passage time of random walks on a random lattice, Phys. Rev. A 40, 2082 (1989).

[212]    G. H. Weiss, First-passage time problems in chemical physics, Adv. Chem. Phys. 13, 1 (1967).

[213]    W. Ledermann and G. E. H. Reuter, Spectral theory for the differential equations of simple birth and death processes, Philos. T. Roy. Soc. A A246, 321 (1954).

[214]    S. Karlin and J. L. MacGregor, The differential equations of birth and death processes, Trans. Am. Math. Soc. 85, 489 (1957).

[215]    C. W. Gardiner, Handbook of stochastic methods in physics, chemistry and the natural sciences, Springer, Berlin (1985).

[216]    C. V. den Broeck, A glimpse into the world of random walks, in Proceedings of NATO conference on noise and nonlinear phenomena in nuclear systems, edited by J. L. Munoz-Cobo and F. C. Difilippo, pp. 3–18. Plenum, New York (1988).

[217]    P. L. Doussal, First-passage time for random walks in random environments, Phys. Rev. Lett. 62, 3097 (1989).

[218]    K. P. N. Murthy and K. W. Kehr, Erratum: Mean first-passage time of random walks on a random lattice, Phys. Rev. A 41, 1160 (1990).

[219]    O. Matan and S. Havlin, Mean first-passage time on loopless aggregates, Phys. Rev. A 40, 6573 (1989).

[220]    P. A. Pury and M. O. Cáceres, Mean first-passage and residence times of random walks on asymmetric disordered chains, J. Phys. A 36, 2695 (2003).

[221]    M. Slutsky, M. Kardar and L. A. Mirny, Diffusion in correlated random potentials, with applications to DNA, Phys. Rev. E 69, 061903 (2004).

[222]    M. Slutsky and L. A. Mirny, Kinetics of protein-DNA interaction: Facilitated target location in sequence-dependent potential, Biophys. J. 87, 4021 (2004).

[223]    Ya. G. Sinai, The limiting behaviour of a one-dimensional random walk in random environment, Theor. Prob. and Appl. 27, 256 (1982).

[224]    H. E. Stanley and S. Havlin, Generalisation of the Sinai anomalous diffusion law, J. Phys. A 20, L615 (1987).

[225]    R. D. Vale and R. A. Milligan, The way things move: Looking under the hood of molecular motor proteins, Science 288, 88 (2000).

[226]    R. D. Astumian, Thermodynamics and kinetics of a Brownian motor, Science 276, 917 (1997).

[227]    P. G. de Gennes, Problems of DNA entry into a cell, Physica A 274, 1 (1999).

[228]    A. Meller, L. Nivon and D. Branton, Voltage-driven DNA translocations through a nanopore, Phys. Rev. Lett. 86, 3435 (2001).

[229]    K. Mussawisade, J. E. Santos and G. M. Schütz, Branching-annihilating random walks in one dimension: Some exact results, J. Phys. A 31, 4381 (1998).

[230]    C. Sire, Analytical results for random walks in the presence of disorder and traps, Phys. Rev. E 60, 1464 (1999).

[231]    M. F. Schlesinger and J. Klafter, Random walks in liquids, J. Phys. Chem. 93, 7023 (1989).

[232]    I. Herbut and S. Milosevic, Hopping on hierarchical structures and random walking on deterministic fractals, J. Phys. A 23, 99 (1990).

[233]    L. Acedo and S. B. Yuste, Territory covered by N random walkers on fractal media: The Sierpinski gasket and the percolation aggregate, Phys. Rev. E 63, 011105 (2000).

[234]    M. Bauer, D. Bernard and J. M. Luck, Even-visiting random walks: exact and asymptotic results in one dimension, J. Phys. A 34, 2659 (2001).

[235]    V. I. Alkhimov, The problem of a self-avoiding random walk, Uspekhi Fizicheskikh Nauk 161, 133 (1991).

[236]    I. Majid, D. Ben-Avraham, S. Havlin and H. E. Stanley, Exact-enumeration approach to random walks on percolation clusters in two dimensions, Phys. Rev. B 30, 1626 (1984).

[237]    B. L. Trus, S. Havlin and D. Stauffer, Distribution of first-passage times for diffusion at the percolation threshold, J. Phys. A 20, 6627 (1987).

[238]    E. W. Montroll and G. H. Weiss, Random walks on lattices. II., J. Math. Phys. 6, 167 (1965).

[239]    J. M. Luck, A numerical study of diffusion and conduction in a 2D random medium, J. Phys. A 17, 2069 (1984).

[240]    D. Zheng, Y. Liu and Z. D. Wang, Matrix method for random walks on lattices, J. Phys. A 28, L409 (1995).

[241]    H. M. Taylor and S. Karlin, An introduction to stochastic modeling, Academic Press, New York (1998).

[242]    S. Goldberg, Probability: An introduction, Dover Publications, New York (1960).

[243]    B. Kahng and S. Redner, Scaling of the first-passage time and the survival probability on exact and quasi-exact self-similar structures, J. Phys. A 22, 887 (1989).

[244]    S. K. Kim and H. H. Lee, Crystallinity and average grain size of films grown by chemical vapor deposition, J. Appl. Phys. 78, 3809 (1995).

[245]    P. C. Bressloff, V. M. Dwyer and M. J. Kearney, A ‘sum-over-paths’ approach to diffusion on trees, J. Phys. A 29, 1881 (1996).

[246]    S. Revathi, V. Balakrishnan, S. Lakshmibala and K. P. N. Murthy, Validity of the mean-field approximation for diffusion on a random comb, Phys. Rev. E 54, 2298 (1996).

[247]    K. Kim, J. S. Choi and Y. S. Kong, Multifractals of normalized first passage time in Sierpinski gasket, J. Phys. Soc. Jpn. 67, 1583 (1998).

[248]    K. Kim, G. H. Kim and Y. S. Kong, Multifractal measures characterized by the iterative map with two control parameters, Fractals 8, 181 (2000).

[249]    J. Asikainen, J. Heinonen and T. Ala-Nissila, Exact and efficient discrete random walk method for time-dependent two-dimensional environments, Phys. Rev. E 66, 066706 (2002).

[250]    D. ben Avraham, S. Redner and Z. Cheng, Random walk in a random multiplicative environment, J. Stat. Phys. 56, 437 (1989).

[251]    Y. Gefen and I. Goldhirsch, The building blocks of random walks, Physica D 38, 119 (1989).

[252]    H. Haucke, S. Washburn, A. D. Benoit, C. P. Umbach and R. A. Webb, Universal scaling of nonlocal and local resistance fluctuations in small wires, Phys. Rev. B 41, 12454 (1990).

[253]    S. Revathi and V. Balakrishnan, Diffusion coefficient for random walks on strips with spatially inhomogeneous boundaries, J. Phys. A 26, 467 (1993).

[254]    S. H. Noskowicz and I. Goldhirsch, First-passage-time distribution in a random random walk, Phys. Rev. A 42, 2047 (1990).

[255]    S. Revathi and V. Balakrishnan, Analytic calculation of the diffusion coefficient for random walks on strips of finite width — dependence on size and nature of boundaries, Phys. Rev. E 47, 916 (1993).

[256]    V. Balakrishnan and C. Vandenbroeck, Transport properties on a random comb, Physica A 217, 1 (1995).

[257]    A. R. Kerstein and R. B. Pandey, Conductivity exponent for stirred superconductor-insulator mixtures, Phys. Rev. B 35, 3575 (1987).

[258]    Y. Gefen and I. Goldhirsch, Relation between the classical resistance of inhomogeneous networks and diffusion, Phys. Rev. B 35, 8639 (1987).

[259]    Y. Gefen and I. Goldhirsch, Biased diffusion on random networks: mean first-passage time and DC conductivity, J. Phys. A 18, L1037 (1985).

[260]    J. W. Haus and K. W. Kehr, Diffusion in regular and disordered lattices, Phys. Reports 150, 263 (1987).

[261]    I. G. S. H. Noskowicz, Distribution functions for random walk processes on networks: An analytic method, J. Stat. Phys. 48, 255 (1987).

[262]    R. Landauer and M. Buttiker, Diffusive traversal time — effective area in magnetically induced interference, Phys. Rev. B 36, 6255 (1987).

[263]    R. Tao, Studies of the spectral dimension for branched Koch curves, J. Phys. A 20, 6151 (1987).

[264]    J. Koplik, S. Redner and D. Wilkinson, Transport and dispersion in random networks with percolation disorder, Phys. Rev. A 37, 2619 (1988).

[265]    N. M. van Dijk, Queueing networks and product forms, John Wiley and Sons, New York (1993).

[266]    E. Gelenbe and G. Pujolle, Introduction to queueing networks, John Wiley and Sons, New York (1998).

[267]    A. E. Conway and N. D. Georganas, Queueing networks - exact computational algorithms, The MIT Press, Cambridge, Massachusetts (1989).

[268]    D. Eppstein, Z. Galil and G. F. Italiano, Dynamic graph algorithms, in Algorithms and theory of computation handbook, edited by M. J. Atallah, chap. 8, CRC Press (1999).

[269]    B. V. Cherkassky, A. V. Goldberg and T. Radzik, Shortest paths algorithms: Theory and experimental evaluation, in Soda ’94: Proceedings of the fifth annual ACM-SIAM symposium on discrete algorithms, pp. 516–525, Society for Industrial and Applied Mathematics, Philadelphia, PA (1994).

[270]    G. Ramalingam and T. Reps, An incremental algorithm for a generalization of the shortest-path problem, J. Algorithms 21, 267 (1996).

[271]    G. Ramalingam and T. Reps, On the computational complexity of dynamic graph problems, Theor. Comput. Sci. 158, 233 (1996).

[272]    S. A. Trygubenko and D. J. Wales, Kinetic analysis of discrete path sampling stationary point databases, Mol. Phys., in press (2006).

[273]    GNU general public license, (2006).

[274]    S. A. Trygubenko, Graph transformation program, (2006).

[275]    Debian — the universal operating system, (2006).

[276]    M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved network optimisation algorithms, Journal of the ACM 34, 596 (1987).

[277]    J. Pitman, Probability, Springer-Verlag, New York (1993).

[278]    N. A. Weiss, A course in probability, Pearson, Addison Wesley, Boston (2006).

[279]    P. Labastie and R. L. Whetten, Statistical mechanics of the cluster solid-liquid transition, Phys. Rev. Lett. 65, 1567 (1990).

[280]    R. S. Berry, T. L. Beck, H. L. Davis and J. Jellinek, Solid-liquid phase behavior in microclusters, Adv. Chem. Phys. 70B, 75 (1988).

[281]    P. Chen, A random walk or color chaos on the stock market? Time-frequency analysis of S&P indexes, Stud. in Nonlin. Dyn. and Econ. 1, 87 (1996).

[282]    M. J. Plank and B. D. Sleeman, A reinforced random walk model of tumour angiogenesis and anti-angiogenic strategies, Math. Med. Bio. 20, 135 (2003).

[283]    W. E, W. Ren and E. Vanden-Eijnden, String method for the study of rare events, Phys. Rev. B 66, 052301 (2002).

[284]    W. E, W. Ren and E. Vanden-Eijnden, Energy landscape and thermally activated switching of submicron-sized ferromagnetic elements, J. Appl. Phys. 93, 2275 (2003).

[285]    W. Quapp, Reaction pathways and projection operators: Application to string methods, J. Comp. Chem. 25, 1277 (2004).

[286]    W. E, W. Ren and E. Vanden-Eijnden, Finite temperature string method for the study of rare events, J. Phys. Chem. A. 109, 6688 (2005).

[287]    W. Ren, E. Vanden-Eijnden, P. Maragakis and W. E, Transition pathways in complex systems: Application of the finite-temperature string method to the alanine dipeptide, J. Chem. Phys. 123, 134109 (2005).

[288]    W. Quapp, A growing string method for the reaction pathway defined by a Newton trajectory, J. Chem. Phys. 122, 174106 (2005).

[289]    J. W. Chu, B. L. Trout and B. R. Brooks, A super-linear minimization scheme for the nudged elastic band method, J. Chem. Phys. 119, 12708 (2003).

[290]    D. A. Evans, Energy landscapes and dynamics of model peptides, Ph.D. thesis, University of Cambridge (December 2003).

[291]    J. M. Carr, Energy landscapes and dynamics of model proteins, Ph.D. thesis, University of Cambridge (April 2005).

[292]    R. E. Bellman, On a routing problem, Quat. Appl. Math 16, 87 (1958).

[293]    L. R. Ford and D. R. Fulkerson, Flows in networks, Princeton University Press, Princeton (1962).

[294]    E. F. Moore, The shortest path through a maze, in Proceedings of the international symposium on the theory of switching, pp. 285–292. Harvard University Press, Harvard (1959).