
Chapter 1

Introduction

The Dark Side of the Force is a pathway to

many abilities some consider to be unnatural.

George Lucas, Revenge of the Sith

Knowledge of the potential energy surface∗ (PES) and the ability to use this knowledge

grant extraordinary powers of prediction about the structure, dynamics and thermo-

dynamics of any molecular system [9]. A potential, also known as a force field, is used

to formally specify the PES in theoretical studies.

1.1 The Force Field

A general force field can be written as a series of terms representing the interactions

between increasingly large sets of atoms [34, 35]:
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where N is the total number of atoms, and the two-body term ǫ
(2)
α,β, for instance,

describes the interaction of two atoms α and β.

Three-body and higher order terms in Equation 1.1 are often neglected, such as, for

∗In this thesis terms ‘potential energy landscape’ and PES are used synonymously. At the time of

writing searching for “potential energy surface” and “potential energy landscape” in GoogleR© yielded

259,000 and 17,800 hits, respectively.
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example, in the Lennard-Jones (LJ) pair potential [9, 36], which takes the form
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, (1.2)

where rα,β is the distance between atoms α and β, ǫ is the depth of the potential energy

well, and 21/6σ is the pair equilibrium separation. This is an approximate potential

as its form is a trade-off between the accurate reproduction of the interaction between

closed-shell atoms and mathematical and computational simplicity. In this thesis we

will use it to describe atomic clusters of various sizes.

1.2 Creating a Coarse-grained Model

It is often possible to gain new insight into the properties of a molecular system by

expressing them in terms of stationary points of the PES, i.e. points where the gradient

of the potential vanishes [9, 37]. Such a coarse-grained picture may be appropriate if

the system spends most of its time in the vicinity of these points and the properties

of interest can be expressed in terms of the properties of these points only. In realistic

applications it may also be the only way forward, as the corresponding PES’s are usually

complex.

The most important stationary points are minima and the transition states that

connect them. Here we define a minimum as a stationary point where the Hessian,

the second derivative matrix, has no negative eigenvalues, while a transition state is a

stationary point with precisely one such eigenvalue [38].

The number of stationary points on the PES generally scales exponentially with

system size [39–43], which necessitates an appropriate sampling strategy of some sort

for larger systems. In particular, to analyse kinetic properties a representative sample

is usually obtained, which generally involves extensive use of single-ended and double-

ended transition state searching techniques [7, 9, 30].

Locating transition states on a PES also provides an important tool in the study of

dynamics using statistical rate theories [44–48]. Unfortunately, it is significantly harder

to locate transition states than local minima, since the system must effectively ‘balance

on a knife-edge’ in one degree of freedom. Many algorithms have been suggested for this

purpose, and the most efficient method may depend upon the nature of the system. For
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example, different considerations probably apply if second derivatives can be calculated

relatively quickly, as for many empirical potentials [9]. Transformation to an alternative

coordinate system may also be beneficial for systems bound by strongly directional

forces [49–57].

Single-ended transition state searches [12–23, 54, 58–86] only require an initial start-

ing geometry. The result of a single-ended search may be a transition state that is not

connected to the starting point by a steepest-descent path, and such methods can be

useful for building up databases of stationary points to provide a non-local picture of

the potential energy surface, including thermodynamic and dynamic properties [9, 86].

However, double-ended searches [27–29, 53, 87–107] require two endpoint geometries, a

mechanism to generate a set of configurations between them, and a suitable functional

(or gradient) to be evaluated and minimised. The most successful single- and double-

ended methods currently appear to be based upon hybrid eigenvector-following [12–24]

and the nudged elastic band approach [7, 27, 29, 30, 108–110], respectively. The two

search types are often used together, since double-ended transition state searches do not

produce a tightly converged transition state and further refinement may be needed [7, 9].

1.3 Working with a Coarse-grained Model

In Chapter 2 and Chapter 4 of this thesis coarse-grained models of a PES are discussed

in graph-theoretical terms. Nowadays a flourishing branch of mathematics and com-

puter science, graph theory arguably started in the year of 1736 with Leonhard Euler’s

paper on the seven bridges of Königsberg, where he abstracted from landmasses and

bridges to highlight the connectivity, and proved that it is impossible to cross every

bridge exactly once in a single walk that starts and ends at the same point.

A graph∗ is defined as a set of nodes with connections between them called edges [111].

A coarse-grained picture of a PES therefore naturally fits into this definition, with nodes

representing minima and edges representing the transition states that connect them.

This approach was adopted in a number of previous energy landscapes studies, ex-

amples being the characterisation of dynamics in a region of a PES [8, 112–114] and

detailed topological analyses of semi-complete PES samples [115].

∗In modern literature the term ‘network’ is often used synonymously with the term ‘graph’.
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A directed edge is defined by its origin and destination nodes and can be travelled

in one direction only. A graph composed of directed edges is termed a directed graph

(digraph). Although every transition state facilitates both forward and reverse reac-

tions, these are usually inequivalent, which leads to a symmetric digraph representation

of a PES, i.e. to a digraph that is composed of pairs of complementary edges that share

the same endpoints. Studies aimed at elucidating the global topology of a PES usually

do not make such a distinction and deal with undirected graphs.

Interesting properties of the PES’s of small Lennard-Jones clusters were recently

discovered by Doye and Massen in a study of the corresponding undirected graph

representations [115]. It appears that such graphs have features similar to both small-

world and scale-free graphs. (A graph is said to have a small-world property if most

pairs of nodes are connected by relatively short paths [111, 116, 117]. Such a graph

can be easily obtained via a random rewiring of regular grid or lattice. The degree of a

node is defined as the total number of its neighbours, and a graph is termed scale-free

if its distribution of degrees follows a power law [111, 116].) While scale-free graphs are

usually obtained via preferential attachment during growth [118], the origin of scale-free

topology in graphs corresponding to PES’s may lie in an Apollonian-like [119] packing

of the basins of attraction [115]. Following the ‘inherent structure’ PES partitioning

due to Stillinger and Weber [41, 42], a basin of attraction of a minimum can be defined

as a set of points in configuration space connected to that minimum via steepest-descent

paths. Topological studies of PES’s are important because they can provide further

insights into the PES connectivity and, consequently, increase our understanding of the

relationship between the structural organisation of the PES and the observed physical

and chemical properties.

Describing physical phenomena such as, for example, Brownian motion [120] and

diffusion [121], requires more sophisticated graph models that allow for different types

of edges. In edge-weighted graphs a label (weight or cost) is associated with every edge.

Such graphs will be used in this thesis for various purposes. For example, an important

part of the path-finding method described in Chapter 2 is the undirected edge-weighted

graph representation, where every node is connected to every other node via an edge

with a weight that is a function of Euclidean distance. In Appendix E we explain how
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a weighted graph approach can be used to identify the fastest reaction pathways.

Both Brownian motion and diffusion were extensively studied in the past with the

help of stochastic processes such as the random walk [121]. In mathematics and physics,

a random walk is a formalisation of the intuitive idea of taking successive steps, each

in a random direction [33]. If the number of possible directions is predefined and finite,

a random walk is very easy to realize on an edge-weighted graph. A walk on a graph

is defined as a sequence of edges such that the second node of each edge (except for

the last edge) is the first node of the next edge. If the weights of the outgoing edges

for every graph node add up to unity the graph is called probabilistic. A single step of

a random walk confined to a probabilistic graph constitutes choosing the next graph

node from the neighbours of the current node with a probability that equals the weight

of the corresponding edge.

In Chapter 4 we will use random walks to model unimolecular chemical reac-

tions [122]. An elementary reaction pathway is described as a transition from one

state to a neighbouring state via a single transition state. Valid predictions of the

sequence of such steps, known as the reaction mechanism, and a time scale associated

with it are the holy grails of modern theoretical chemistry. Node-weighted probabilistic

graphs are needed to address the time scale issue, because the time spent by a system

before the transition occurs is likely to vary from state to state. An alternative descrip-

tion based on a probabilistic graph where each node is allowed to have a connection to

itself is a more general approach to achieve this objective [123]. Both these models are

employed in Chapter 4 in calculations of the average time for the reaction known as

the mean first passage time.

The aforementioned graph model with self-connections is known by scientists in

the fields of probability and stochastic processes as a discrete-time Markov chain — a

stochastic process with a discrete state space [123]. The question of the first moment

of the distribution of first passage times in stochastic processes is one of the most basic

ones and is over two hundred years old. The first mean first passage time calculation was

probably done by Jacob Bernoulli in the beginning of eighteenth century. In his ground-

breaking work on probability titled ‘The art of conjecture’, which was posthumously

published by his nephew Nicholas Bernoulli in 1713, he describes the techniques for



1.4. Thesis Overview 6

calculating the duration of various games of chance [124]. A number of methods for

efficient calculation of the mean first passage times was developed since then, some of

which are yet to be fully utilised in chemical applications.

In this thesis I will attempt to address two important stages in an energy-landscapes-

based approach to the analysis of chemical reactivity, namely, finding reaction (or

rearrangement) pathways and extracting the kinetic information from the obtained

pathway ensemble. As the meaning of the term pathway (or path) varies from chapter

to chapter I will spend some time in the introductory sections clarifying the terminology.

1.4 Thesis Overview

The results of the work that I have carried out are presented in three chapters.

The main focus of Chapter 2 is on double-ended methods for finding transition

states. A detailed review of one of the leading methods from that class is followed

by the discussion of our modifications and improvements that allowed us to extend its

applicability. Results for a model two-dimensional surface and Lennard-Jones clusters

of several sizes are presented. The chapter culminates with an application to finding

folding paths for a family of small peptides known as tryptophan zippers.

Chapter 3 is devoted to discussion of two exciting properties of rearrangement

pathways — cooperativity and localisation. A new measure of cooperativity suitable for

applications to atomic rearrangements is introduced and subsequently used to establish

the links between cooperativity of a single-step rearrangement, the energy barrier height

and the difficulty of locating the corresponding transition state with both single-ended

and double-ended methods.

In Chapter 4 we deal with compact representations of large pathway ensembles

borrowing ideas from graph theory and the theory of random processes. The main

theme is the development of faster methods for calculation of mean escape times for

graphs of increasing complexity. We devise a number of approaches for extracting this

kinetic information and compare them to well-established techniques such as kinetic

Monte Carlo and discrete path sampling.

Chapter 5 summarises the achievements of the work described in this thesis and

suggests the directions for future research.


